Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by C Cordon Cardo
Total Records ( 3 ) for C Cordon Cardo
  C. M Seager , A. M Puzio Kuter , T Patel , S Jain , C Cordon Cardo , J Mc Kiernan and C. Abate Shen
 

Early-stage bladder cancer occurs as two distinct forms: namely, low-grade superficial disease and high-grade carcinoma in situ (CIS), which is the major precursor of muscle-invasive bladder cancer. Although the low-grade form is readily treatable, few, if any, effective treatments are currently available for preventing progression of nonmuscle-invasive CIS to invasive bladder cancer. Based on our previous findings that the mammalian target of Rapamycin (mTOR) signaling pathway is activated in muscle-invasive bladder cancer, but not superficial disease, we reasoned that suppression of this pathway might block cancer progression. To test this idea, we performed in vivo preclinical studies using a genetically engineered mouse model that we now show recapitulates progression from nonmuscle-invasive CIS to muscle-invasive bladder tumors. We find that delivery of Rapamycin, an mTOR inhibitor, subsequent to the occurrence of CIS effectively prevents progression to invasive bladder cancer. Furthermore, we show that intravesical delivery of Rapamycin directly into the bladder lumen is highly effective for suppressing bladder tumorigenesis. Thus, our findings show the potential therapeutic benefit of inhibiting mTOR signaling for treatment of patients at high risk of developing invasive bladder cancer. More broadly, our findings support a more widespread use of intravesical delivery of therapeutic agents for treatment of high-risk bladder cancer patients, and provide a mouse model for effective preclinical testing of potential novel agents.

  S. L Park , D Bastani , B. Y Goldstein , S. C Chang , W Cozen , L Cai , C Cordon Cardo , B Ding , S Greenland , N He , S. K Hussain , Q Jiang , Y. C. A Lee , S Liu , M. L Lu , T. M Mack , J. T Mao , H Morgenstern , L. N Mu , S. S Oh , A Pantuck , J. C Papp , J Rao , V. E Reuter , D. P Tashkin , H Wang , N. C. Y You , S. Z Yu , J. K Zhao and Z. F. Zhang
 

Constituents of tobacco smoke can cause DNA double-strand breaks (DSBs), leading to tumorigenesis. The NBS1 gene product is a vital component in DSB detection and repair, thus genetic variations may influence cancer development. We examined the associations between NBS1 polymorphisms and haplotypes and newly incident smoking-related cancers in three case–control studies (Los Angeles: 611 lung and 601 upper aero-digestive tract (UADT) cancer cases and 1040 controls; Memorial Sloan-Kettering Cancer Center: 227 bladder cancer cases and 211 controls and Taixing, China: 218 esophagus, 206 stomach, 204 liver cancer cases and 415 controls). rs1061302 was associated with cancers of the lung [adjusted odds ratio (ORadj) = 1.6, 95% confidence interval (CI): 1.2, 2.4], larynx (ORadj = 0.56, 95% CI: 0.32, 0.97) and liver (ORadj = 1.7, 95% CI: 1.0, 2.9). Additionally, positive associations were found for rs709816 with bladder cancer (ORadj = 4.2, 95% CI: 1.4, 12) and rs1063054 with lung cancer (ORadj = 1.6, 95% CI: 1.0, 2.3). Some associations in lung and stomach cancers varied with smoking status. CAC haplotype was positively associated with smoking-related cancers: lung (ORadj = 1.7, 95% CI: 1.1, 2.9) and UADT (ORadj = 2.0, 95% CI: 1.1, 3.7), specifically, oropharynx (ORadj = 2.1, 95% CI: 1.0, 4.2) and larynx (ORadj = 4.8, 95% CI: 1.7, 14). Bayesian false-discovery probabilities were calculated to assess Type I error. It appears that NBS1 polymorphisms and haplotypes may be associated with smoking-related cancers and that these associations may differ by smoking status. Our findings also suggest that single-nucleotide polymorphisms located in the binding region of the MRE-RAD50-NBS1 complex or microRNA targeted pathways may influence tumor development. These hypotheses should be further examined in functional studies.

  V Olive , M. J Bennett , J. C Walker , C Ma , I Jiang , C Cordon Cardo , Q. J Li , S. W Lowe , G. J Hannon and L. He
 

Recent studies have revealed the importance of multiple microRNAs (miRNAs) in promoting tumorigenesis, among which mir-17-92/Oncomir-1 exhibits potent oncogenic activity. Genomic amplification and elevated expression of mir-17-92 occur in several human B-cell lymphomas, and enforced mir-17-92 expression in mice cooperates with c-myc to promote the formation of B-cell lymphomas. Unlike classic protein-coding oncogenes, mir-17-92 has an unconventional gene structure, where one primary transcript yields six individual miRNAs. Here, we functionally dissected the individual components of mir-17-92 by assaying their tumorigenic potential in vivo. Using the Eµ-myc model of mouse B-cell lymphoma, we identified miR-19 as the key oncogenic component of mir-17-92, both necessary and sufficient for promoting c-myc-induced lymphomagenesis by repressing apoptosis. The oncogenic activity of miR-19 is at least in part due to its repression of the tumor suppressor Pten. Consistently, miR-19 activates the Akt–mTOR (mammalian target of rapamycin) pathway, thereby functionally antagonizing Pten to promote cell survival. Our findings reveal the essential role of miR-19 in mediating the oncogenic activity of mir-17-92, and implicate the functional diversity of mir-17-92 components as the molecular basis for its pleiotropic effects during tumorigenesis.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility