Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Boominathan Amutha
Total Records ( 2 ) for Boominathan Amutha
  Yan Zhang , Elise R. Lyver , Eiko Nakamaru-Ogiso , Heeyong Yoon , Boominathan Amutha , Dong- Woo Lee , Erfei Bi , Tomoko Ohnishi , Fevzi Daldal , Debkumar Pain and Andrew Dancis
  In a forward genetic screen for interaction with mitochondrial iron carrier proteins in Saccharomyces cerevisiae, a hypomorphic mutation of the essential DRE2 gene was found to confer lethality when combined with Δmrs3 and Δmrs4. The dre2 mutant or Dre2-depleted cells were deficient in cytosolic Fe/S cluster protein activities while maintaining mitochondrial Fe/S clusters. The Dre2 amino acid sequence was evolutionarily conserved, and cysteine motifs (CX2CXC and twin CX2C) in human and yeast proteins were perfectly aligned. The human Dre2 homolog (implicated in blocking apoptosis and called CIAPIN1 or anamorsin) was able to complement the nonviability of a Δdre2 deletion strain. The Dre2 protein with triple hemagglutinin tag was located in the cytoplasm and in the mitochondrial intermembrane space. Yeast Dre2 overexpressed and purified from bacteria was brown and exhibited signature absorption and electron paramagnetic resonance spectra, indicating the presence of both [2Fe-2S] and [4Fe-4S] clusters. Thus, Dre2 is an essential conserved Fe/S cluster protein implicated in extramitochondrial Fe/S cluster assembly, similar to other components of the so-called CIA (cytoplasmic Fe/S cluster assembly) pathway although partially localized to the mitochondrial intermembrane space.
  Boominathan Amutha , Donna M. Gordon , Yajuan Gu , Elise R. Lyver , Andrew Dancis and Debkumar Pain
  Iron-sulfur (Fe-S) cluster biogenesis in mitochondria is an essential process and is conserved from yeast to humans. Several proteins with Fe-S cluster cofactors reside in mitochondria, including aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. We found that mitochondria isolated from wild-type yeast contain a pool of apoaconitase and machinery capable of forming new clusters and inserting them into this endogenous apoprotein pool. These observations allowed us to develop assays to assess the role of nucleotides (GTP and ATP) in cluster biogenesis in mitochondria. We show that Fe-S cluster biogenesis in isolated mitochondria is enhanced by the addition of GTP and ATP. Hydrolysis of both GTP and ATP is necessary, and the addition of ATP cannot circumvent processes that require GTP hydrolysis. Both in vivo and in vitro experiments suggest that GTP must enter into the matrix to exert its effects on cluster biogenesis. Upon import into isolated mitochondria, purified apoferredoxin can also be used as a substrate by the Fe-S cluster machinery in a GTP-dependent manner. GTP is likely required for a common step involved in the cluster biogenesis of aconitase and ferredoxin. To our knowledge this is the first report demonstrating a role of GTP in mitochondrial Fe-S cluster biogenesis.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility