Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Barbara J. Mann
Total Records ( 2 ) for Barbara J. Mann
  Mayuresh M. Abhyankar , Amelia E. Hochreiter , Jessica Hershey , Clive Evans , Yan Zhang , Oswald Crasta , Bruno W. S. Sobral , Barbara J. Mann , William A. Petri Jr. and Carol A. Gilchrist
  The unicellular eukaryote Entamoeba histolytica is a human parasite that causes amebic dysentery and liver abscess. A genome-wide analysis of gene expression modulated by intestinal colonization and invasion identified an upregulated transcript that encoded a putative high-mobility-group box (HMGB) protein, EhHMGB1. We tested if EhHMGB1 encoded a functional HMGB protein and determined its role in control of parasite gene expression. Recombinant EhHMGB1 was able to bend DNA in vitro, a characteristic of HMGB proteins. Core conserved residues required for DNA bending activity in other HMGB proteins were demonstrated by mutational analysis to be essential for EhHMGB1 activity. EhHMGB1 was also able to enhance the binding of human p53 to its cognate DNA sequence in vitro, which is expected for an HMGB1 protein. Confocal microscopy, using antibodies against the recombinant protein, confirmed its nuclear localization. Overexpression of EhHMGB1 in HM1:IMSS trophozoites led to modulation of 33 transcripts involved in a variety of cellular functions. Of these, 20 were also modulated at either day 1 or day 29 in the mouse model of intestinal amebiasis. Notably, four transcripts with known roles in virulence, including two encoding Gal/GalNAc lectin light chains, were modulated in response to EhHMGB1 overexpression. We concluded that EhHMGB1 was a bona fide HMGB protein with the capacity to recapitulate part of the modulation of parasite gene expression seen during adaptation to the host intestine.
  Aiping Qin , David W. Scott and Barbara J. Mann
  Francisella tularensis subsp. tularensis is a highly virulent bacterium that is a CDC select agent. Despite advancements in the understanding of its biology, details pertaining to virulence are poorly understood. In previous work, we identified a transposon insertion mutant in the FTT0107c locus that was defective in intracellular survival in HepG2 and J77A.1 cells. Here, we report that this mutant was also highly attenuated in vivo. The FTT0107c locus is predicted to encode an ortholog of the disulfide bond formation B protein (DsbB). This designation was confirmed by complementation of an Escherichia coli dsbB mutant. This dsbB mutant of Schu S4 was highly attenuated in mice, but unlike what has been reported for Francisella novicida, intranasal immunization with a sublethal dose did not induce protection against wild-type challenge. dsbB was found to be transcribed in an operon with acrA and acrB, which encode an RND-type efflux pump. However, this pump did not make a significant contribution to virulence because strains with nonpolar deletions in acrA and acrB behaved like wild-type strain Schu S4 with respect to intracellular growth and in vivo virulence. This result is in contrast to a report that an acrB mutant of a live vaccine strain of F. tularensis has decreased virulence in mice. Overall, these results demonstrate key differences between the virulence requirements of Schu S4 and less virulent subspecies of Francisella. We have shown that DsbB is a key participant in intracellular growth and virulence, and our results suggest that there are critical virulence factors that contain disulfide bonds.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility