Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by B. M. Shields
Total Records ( 3 ) for B. M. Shields
  A. M. Steele , B. M. Shields , M. Shepherd , S. Ellard , A. T. Hattersley and E. R. Pearson
  Aims: To investigate all-cause and cardiovascular mortality in subjects with diabetes caused by a mutation in the hepatocyte nuclear factor 1α gene (HNF1A).
Methods: We identified 39 British families with HNF1A mutations. Consenting individuals were asked details of age and cause of death of parents and siblings. Copies of death certificates were requested from the family or were obtained via the Offices for National Statistics.
Results: Data were collated on 241 control subjects and 153 mutation carriers. Of those who died, 66% of mutation carriers died from a cardiovascular-related illness compared with 43% of control subjects (P=0.02). Family members with HNF1A mutations died at a younger age than familial control subjects [all-cause hazard ratio, adjusting for sex and smoking status: 1.9 (95% confidence interval 1.2, 2.9, P=0.006; cardiovascular hazard ratio: 2.3, confidence interval 1.3, 4.2, P=0.006)].Conclusions: We have shown that individuals known to have diabetes caused by a mutation in the HNF1A gene have an increased risk of cardiovascular mortality compared with their unaffected family members. As with other forms of diabetes, consideration should be given to early statin therapy despite a seemingly protective lipid profile.
  A. G. Jones , R. E. J. Besser , T. J. McDonald , B. M. Shields , S. V. Hope , P. Bowman , R. A. Oram , B. A. Knight and A. T. Hattersley
  Aims  Serum C-peptide measurement can assist clinical management of diabetes, but practicalities of collection limit widespread use. Urine C-peptide creatinine ratio may be a non-invasive practical alternative. The stability of C-peptide in urine allows outpatient or community testing. We aimed to assess how urine C-peptide creatinine ratio compared with serum C-peptide measurement during a mixed-meal tolerance test in individuals with late-onset, insulin-treated diabetes. Methods  We correlated the gold standard of a stimulated serum C-peptide in a mixed-meal tolerance test with fasting and stimulated (mixed-meal tolerance test, standard home meal and largest home meal) urine C-peptide creatinine ratio in 51 subjects with insulin-treated diabetes (diagnosis after age 30 years, median age 66 years, median age at diagnosis 54, 42 with Type 2 diabetes, estimated glomerular filtration rate > 60 ml min−1 1.73 m−2). Results  Ninety-minute mixed-meal tolerance test serum C-peptide is correlated with mixed-meal tolerance test-stimulated urine C-peptide creatinine ratio (r = 0.82), urine C-peptide creatinine ratio after a standard breakfast at home (r = 0.73) and urine C-peptide creatinine ratio after largest home meal (r = 0.71). A stimulated (largest home meal) urine C-peptide creatinine ratio cut-off of 0.3 nmol/mmol had a 100% sensitivity and 96% specificity (area under receiver operating characteristic curve = 0.99) in identifying subjects without clinically significant endogenous insulin secretion (mixed-meal tolerance test-stimulated C-peptide < 0.2 nmol/l). In detecting a proposed serum C-peptide threshold for insulin requirement (stimulated serum C-peptide < 0.6 nmol/l), a stimulated (largest home meal) urine C-peptide creatinine ratio cut-off of 0.6 nmol/mmol had a sensitivity and specificity of 92%. Conclusion  In patients with insulin-treated diabetes diagnosed after age 30 years, urine C-peptide creatinine ratio is well correlated with serum C-peptide and may provide a practical alternative measure to detect insulin deficiency for use in routine clinical practice.
  P. Bowman , T. J. McDonald , B. M. Shields , B. A. Knight and A. T. Hattersley
  Aims Serum C-peptide can be used in Type 2 diabetes as a measure of endogenous insulin secretion, but practicalities of collection limit its routine clinical use. Urine C-peptide creatinine ratio is a non-invasive alternative that is stable for at least 3 days at room temperature in boric acid preservative. We aimed to assess the utility of urine C-peptide creatinine ratio in individuals with Type 2 diabetes as an alternative to serum C-peptide. Methods  We assessed, in 77 individuals with Type 2 diabetes, the reproducibility of, and correlations between, fasting and postprandial urine C-peptide creatinine ratio and serum C-peptide, and the impact of renal impairment (estimated glomerular filtration rate < 60 ml min−1 1.73 m−2) on these correlations. Results Urine C-peptide creatinine ratio was at least as reproducible as serum C-peptide [fasting coefficient of variation mean (95% CI): 28 (21−35)% vs. 38 (26−59)% and 2−h post-meal 26 (18−33)% vs. 27 (20−34)%. Urine C-peptide creatinine ratio 2 h post-meal was correlated with stimulated serum C-peptide, both the 2−h value (r = 0.64, P < 0.001) and the 2-h area under the C-peptide curve (r = 0.63, P < 0.001). The association seen was similar in patients with and without moderate renal impairment (P = 0.6). Conclusions In patients with Type 2 diabetes, a single urine C-peptide creatinine ratio is a stable, reproducible measure that is well correlated with serum C-peptide following meal stimulation, even if there is moderate renal impairment. Urine C-peptide creatinine ratio therefore has potential for use in clinical practice in the assessment of Type 2 diabetes.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility