Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by B Wen
Total Records ( 3 ) for B Wen
  J Luan , J Yuan , X Li , S Jin , L Yu , M Liao , H Zhang , C Xu , Q He , B Wen , X Zhong , X Chen , H. L.Y Chan , J. J.Y Sung , B Zhou and C. Ding
 

Background: Variations in the hepatitis B virus (HBV) genome may develop spontaneously or under selective pressure from antiviral therapy. Such variations may confer drug resistance or affect virus replication capacity, resulting in failure of antiviral therapy.

Methods: A duplex PCR was used to amplify the region of the reverse transcriptase gene, the precore promoter, and the basal core promoter of the HBV genome. Four multiplex primer-extension reactions were used to interrogate 60 frequently observed HBV variants during antiviral therapy. Automated MALDI-TOF mass spectrometry (MS) was used for mutation detection. Capillary sequencing was used to confirm the MS results.

Results: The limit of quantification was 1000 HBV copies/mL for multiplex detection of HBV variants. Fifty-three variants (88.3%) were analyzed successfully in at least 90% of the sera from 88 treatment-naive patients and 80 patients with virologic breakthrough. MS was able to detect twice as many minor variants as direct sequencing while achieving close to full automation. MS and direct sequencing showed only 0.1% discordance in variant calls.

Conclusions: This platform based on multiplex primer extension and MALDI-TOF MS was able to detect 60 HBV variants in 4 multiplex reactions with accuracy and low detection limits.

  B Wen , Y Chen and W. L. Fitch
 

Nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, has been associated with incidences of skin rash and hepatotoxicity in patients. Although the mechanism of idiosyncratic hepatotoxicity remains unknown, it is proposed that metabolic activation of nevirapine and subsequent covalently binding of reactive metabolites to cellular proteins play a causative role. Studies were initiated to determine whether nevirapine undergoes cytochrome P450 (P450)-mediated bioactivation in human liver microsomes to electrophilic intermediates. Liquid chromatography-tandem mass spectrometry analysis of incubations containing nevirapine and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed the formation of a GSH conjugate derived from the addition of the sulfydryl nucleophile to nevirapine. No other GSH conjugates were detected, including conjugates of oxidized metabolites of nevirapine. These findings are consistent with a bioactivation sequence involving initial P450-catalyzed dehydrogenation of the aromatic nucleus with a 4-methyl group in nevirapine to an electrophilic quinone methide intermediate, which is subsequently attacked by glutathione yielding the sulfydryl conjugate. Formation of the nevirapine GSH conjugate was primarily catalyzed by heterologously expressed recombinant CYP3A4 and, to a lesser extent, CYP2D6, CYP2C19, and CYP2A6. In addition, the quinone methide reactive metabolite was a mechanism-based inactivator of CYP3A4, with inactivation parameters KI = 31 µM and kinact = 0.029 min–1, respectively. It is proposed that formation of the quinone methide intermediate may represent a rate-limiting step in the initiation of nevirapine-mediated hepatotoxicity.

  B Wen , Y Chen and W. L. Fitch
 

Nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, has been associated with incidences of skin rash and hepatotoxicity in patients. Although the mechanism of idiosyncratic hepatotoxicity remains unknown, it is proposed that metabolic activation of nevirapine and subsequent covalently binding of reactive metabolites to cellular proteins play a causative role. Studies were initiated to determine whether nevirapine undergoes cytochrome P450 (P450)-mediated bioactivation in human liver microsomes to electrophilic intermediates. Liquid chromatography-tandem mass spectrometry analysis of incubations containing nevirapine and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed the formation of a GSH conjugate derived from the addition of the sulfydryl nucleophile to nevirapine. No other GSH conjugates were detected, including conjugates of oxidized metabolites of nevirapine. These findings are consistent with a bioactivation sequence involving initial P450-catalyzed dehydrogenation of the aromatic nucleus with a 4-methyl group in nevirapine to an electrophilic quinone methide intermediate, which is subsequently attacked by glutathione yielding the sulfydryl conjugate. Formation of the nevirapine GSH conjugate was primarily catalyzed by heterologously expressed recombinant CYP3A4 and, to a lesser extent, CYP2D6, CYP2C19, and CYP2A6. In addition, the quinone methide reactive metabolite was a mechanism-based inactivator of CYP3A4, with inactivation parameters KI = 31 µM and kinact = 0.029 min–1, respectively. It is proposed that formation of the quinone methide intermediate may represent a rate-limiting step in the initiation of nevirapine-mediated hepatotoxicity.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility