Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by B Luo
Total Records ( 3 ) for B Luo
  R. C Cooksey , D Jones , S Gabrielsen , J Huang , J. A Simcox , B Luo , Y Soesanto , H Rienhoff , E Dale Abel and D. A. McClain

Iron overload can cause insulin deficiency, but in some cases this may be insufficient to result in diabetes. We hypothesized that the protective effects of decreased iron would be more significant with increased β-cell demand and stress. Therefore, we treated the ob/ob mouse model of type 2 diabetes with an iron-restricted diet (35 mg/kg iron) or with an oral iron chelator. Control mice were fed normal chow containing 500 mg/kg iron. Neither treatment resulted in iron deficiency or anemia. The low-iron diet significantly ameliorated diabetes in the mice. The effect was long lasting and reversible. Ob/ob mice on the low-iron diet exhibited significant increases in insulin sensitivity and β-cell function, consistent with the phenotype in mouse models of hereditary iron overload. The effects were not accounted for by changes in weight or feeding behavior. Treatment with iron chelation had a more dramatic effect, allowing the ob/ob mice to maintain normal glucose tolerance for at least 10.5 wk despite no effect on weight. Although dietary iron restriction preserved β-cell function in ob/ob mice fed a high-fat diet, the effects on overall glucose levels were less apparent due to a loss of the beneficial effects of iron on insulin sensitivity. Beneficial effects of iron restriction were minimal in wild-type mice on normal chow but were apparent in mice on high-fat diets. We conclude that, even at "normal" levels, iron exerts detrimental effects on β-cell function that are reversible with dietary restriction or pharmacotherapy.

  Y Wang , J Li , Y Cui , T Li , K. M Ng , H Geng , H Li , X. s Shu , W Liu , B Luo , Q Zhang , T. S. K Mok , W Zheng , X Qiu , G Srivastava , J Yu , J. J.Y Sung , A. T.C Chan , D Ma , Q Tao and W. Han

Closely located at the tumor suppressor locus 16q22.1, CKLF-like MARVEL transmembrane domain-containing member 3 and 4 (CMTM3 and CMTM4) encode two CMTM family proteins, which link chemokines and the transmembrane-4 superfamily. In contrast to the broad expression of both CMTM3 and CMTM4 in normal human adult tissues, only CMTM3 is silenced or down-regulated in common carcinoma (gastric, breast, nasopharyngeal, esophageal, and colon) cell lines and primary tumors. CMTM3 methylation was not detected in normal epithelial cell lines and tissues, with weak methylation present in only 5 of 35 (14%) gastric cancer adjacent normal tissues. Furthermore, immunohistochemistry showed that CMTM3 protein was absent in 12 of 35 (34%) gastric and 1 of 2 colorectal tumors, which was well correlated with its methylation status. The silencing of CMTM3 is due to aberrant promoter CpG methylation that could be reversed by pharmacologic demethylation. Ectopic expression of CMTM3 strongly suppressed the colony formation of carcinoma cell lines. In addition, CMTM3 inhibited tumor cell growth and induced apoptosis with caspase-3 activation. Thus, CMTM3 exerts tumor-suppressive functions in tumor cells, with frequent epigenetic inactivation by promoter CpG methylation in common carcinomas. [Cancer Res 2009;69(12):5194–201]

  G. A Smolen , J Zhang , M. J Zubrowski , E. J Edelman , B Luo , M Yu , L. W Ng , C. M Scherber , B. J Schott , S Ramaswamy , D Irimia , D. E Root and D. A. Haber

To define the functional pathways regulating epithelial cell migration, we performed a genome-wide RNAi screen using 55,000 pooled lentiviral shRNAs targeting ~11,000 genes, selecting for transduced cells with increased motility. A stringent validation protocol generated a set of 31 genes representing diverse pathways whose knockdown dramatically enhances cellular migration. Some of these pathways share features of epithelial-to-mesenchymal transition (EMT), and together they implicate key regulators of transcription, cellular signaling, and metabolism, as well as novel modulators of cellular trafficking, such as DLG5. In delineating downstream pathways mediating these migration phenotypes, we observed universal activation of ERKs and a profound dependence on their RSK effectors. Pharmacological inhibition of RSK dramatically suppresses epithelial cell migration induced by knockdown of all 31 genes, suggesting that convergence of diverse migratory pathways on this kinase may provide a therapeutic opportunity in disorders of cell migration, including cancer metastasis.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility