Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by B George
Total Records ( 1 ) for B George
  S Chen , B Feng , B George , R Chakrabarti , M Chen and S. Chakrabarti

Sustained hyperglycemia in diabetes causes alteration of a large number of transcription factors and mRNA transcripts, leading to tissue damage. We investigated whether p300, a transcriptional coactivator with histone acetyl transferase activity, regulates glucose-induced activation of transcription factors and subsequent upregulation of vasoactive factors and extracellular matrix (ECM) proteins in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated in varied glucose concentrations and were studied after p300 small interfering RNA (siRNA) transfection, p300 overexpression, or incubation with the p300 inhibitor curcumin. Histone H2AX phosphorylation and lysine acetylation were examined for oxidative DNA damage and p300 activation. Screening for transcription factors was performed with the Luminex system. Alterations of selected transcription factors were validated. mRNA expression of p300, endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), and fibronectin (FN) and its splice variant EDB+FN and FN protein production were analyzed. HUVECs in 25 mmol/l glucose showed increased p300 production accompanied by increased binding of p300 to ET-1 and FN promoters, augmented histone acetylation, H2AX phosphorylation, activation of multiple transcription factors, and increased mRNA expression of vasoactive factors and ECM proteins. p300 overexpression showed a glucose-like effect on the mRNA expression of ET-1, VEGF, and FN. Furthermore, siRNA-mediated p300 blockade or chemical inhibitor of p300 prevented such glucose-induced changes. Similar mRNA upregulation was also seen in the organ culture of vascular tissues, which was prevented by p300 siRNA transfection. Data from these studies suggest that glucose-induced p300 upregulation is an important upstream epigenetic mechanism regulating gene expression of vasoactive factors and ECM proteins in endothelial cells and is a potential therapeutic target for diabetic complications.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility