Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Ashley T. Haase
Total Records ( 2 ) for Ashley T. Haase
  Patrick M. Schlievert , Kristi L. Strandberg , Amanda J. Brosnahan , Marnie L. Peterson , Stefan E. Pambuccian , Karla R. Nephew , Kevin G. Brunner , Nancy J. Schultz-Darken and Ashley T. Haase
  Glycerol monolaurate (GML) is a fatty acid monoester that inhibits growth and exotoxin production of vaginal pathogens and cytokine production by vaginal epithelial cells. Because of these activities, and because of the importance of cytokine-mediated immune activation in human immunodeficiency virus type 1 (HIV-1) transmission to women, our laboratories are performing studies on the potential efficacy of GML as a topical microbicide to interfere with HIV-1 transmission in the simian immunodeficiency virus-rhesus macaque model. While GML is generally recognized as safe by the FDA for topical use, its safety for chronic use and effects on normal vaginal microflora in this animal model have not been evaluated. GML was therefore tested both in vitro for its effects on vaginal flora lactobacilli and in vivo as a 5% gel administered vaginally to monkeys. In vitro studies demonstrated that lactobacilli are not killed by GML; GML blocks the loss of their viability in stationary phase and does not interfere with lactic acid production. GML (5% gel) does not quantitatively alter monkey aerobic vaginal microflora compared to vehicle control gel. Lactobacilli and coagulase-negative staphylococci are the dominant vaginal aerobic microflora, with beta-hemolytic streptococci, Staphylococcus aureus, and yeasts sporadically present; gram-negative rods are not part of their vaginal flora. Colposcopy and biopsy studies indicate that GML does not alter normal mucosal integrity and does not induce inflammation; instead, GML reduces epithelial cell production of interleukin 8. The studies suggest that GML is safe for chronic use in monkeys when applied vaginally; it does not alter either mucosal microflora or integrity.
  Andrea M. Weiler , Qingsheng Li , Lijie Duan , Masahiko Kaizu , Kim L. Weisgrau , Thomas C. Friedrich , Matthew R. Reynolds , Ashley T. Haase and Eva G. Rakasz
  Here we report the results of studies in the simian immunodeficiency virus (SIV)-rhesus macaque model of intravaginal transmission of human immunodeficiency virus type 1 in the setting of genital ulcerative diseases. We document preferential association of vRNA with induced ulcers during the first days of infection and show that allogeneic cells of the inoculum traffic from the vaginal lumen to lymphatic tissues. This surprisingly rapid systemic dissemination in this cell-associated SIV challenge model thus reveals the challenges of preventing transmission in the setting of genital ulcerative diseases and illustrates the utility of this animal model in tests of strategies aimed at reducing transmission under these conditions.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility