Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Asa Sudhakar
Total Records ( 2 ) for Asa Sudhakar
  B. Elayarajah , R. Rajendran , C. Balakumar , B. Venkatrajah , Asa Sudhakar and P.K. Janiga
  Microbial damage of fabrics and microbial-contaminated fabrics are known to be the major source of nosocomial cross-infections in hospitals. The hospital fabrics possess susceptible surface properties to harbour diverse group of bacteria. The main aim of this study is to treat the fabric materials using two groups of antibacterial drug combinations based on their synergistic behaviour. Hence for the first time synergistic ofloxacin and ornidazole drugs were covalently bound to the textile materials using reactive dye method. Using the standard AATCC Test Method-100 the antibacterial activity and durability of drug treated textile materials was evaluated before and after wash. Drug treated textile materials (before wash) showed maximum percentage of reduction with a reduction percentage of 90% for E. coli (nylon) and 92.85% for S. aureus (polyester). After 5th wash, the treated textile materials showed maximum reduction percentage of 63.4% for E. coli (nylon) and 64.1% for S. aureus (nylon). The development of antibacterial textile finish in the study could have the possibility to eliminate the drug resistance properties of hospital based nosocomial pathogens.
  Elayarajah , R. Rajendran , Venkatrajah , Sweda Sreekumar , Asa Sudhakar , Janiga and Soumya Sreekumar
  Biomaterial-centred bacterial infections present common and challenging complications with medical implants like ureteral stent which provide substratum for the biofilm formation. Hence the purpose of this study is to make antibacterial stent surface with biodegradable polymer (tocopherol acetate) and anti-infective agents (norfloxacin and metronidazole) using a modified dip-coating procedure. This is done by impregnating the stent pieces in the anti-infective solution (a mixture of norfloxacin-metronidazole and polymer) for uniform surface coating (drug-carrier-coated stents). After coating, agar diffusion test was performed as qualitative test to find out the sensitivity of coated stents against the clinical isolates, Staphylococcus epidermidis and Escherichia coli. Quantitative test was measured by calculating the numbers of adhered bacteria on coated and uncoated stents by incubating the stent pieces in artificial urine. Difference in the number of viable bacteria adhered on the surface of coated and uncoated stents were statistically calculated using chi square test with p<0.05 considered significant. The stent colonising ability of Staphylococcus epidermidis and Escherichia coli in a controlled environment chamber was determined using two-challenge dose of the isolates by in vitro challenge test. In qualitative test, the zone of inhibition around the coated stents showed sensitivity against the clinical isolates. In quantitative test, the number of adhered bacteria on the surface of coated stents was reduced to a significant level (p<0.05). The polymer, tocopherol acetate is highly biodegradable in nature. Due to its degrading ability in body tissues, it releases the anti-infective drugs at a constant and sustained rate.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility