Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Alexander Popp
Total Records ( 3 ) for Alexander Popp
  Hermann Lotze-Campen , Christoph Muller , Alberte Bondeau , Stefanie Rost , Alexander Popp and Wolfgang Lucht
  In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for food and bio-energy production, biodiversity conservation, and changing production conditions due to climate change. The potential of technological change in agriculture to adapt to these trends is subject to considerable uncertainty. In order to simulate these combined effects in a spatially explicit way, we present a model of agricultural production and its impact on the environment (MAgPIE). MAgPIE is a mathematical programming model covering the most important agricultural crop and livestock production types in 10 economic regions worldwide at a spatial resolution of three by three degrees, i.e., approximately 300 by 300 km at the equator. It takes regional economic conditions as well as spatially explicit data on potential crop yields and land and water constraints into account and derives specific land-use patterns for each grid cell. Shadow prices for binding constraints can be used to valuate resources for which in many places no markets exist, especially irrigation water. In this article, we describe the model structure and validation. We apply the model to possible future scenarios up to 2055 and derive required rates of technological change (i.e., yield increase) in agricultural production in order to meet future food demand.
  Christoph Schmitz , Hans van Meijl , Page Kyle , Gerald C. Nelson , Shinichiro Fujimori , Angelo Gurgel , Petr Havlik , Edwina Heyhoe , Daniel Mason d`Croz , Alexander Popp , Ron Sands , Andrzej Tabeau , Dominique van der Mensbrugghe , Martin von Lampe , Marshall Wise , Elodie Blanc , Tomoko Hasegawa , Aikaterini Kavallari and Hugo Valin
  Changes in agricultural land use have important implications for environmental services. Previous studies of agricultural land-use futures have been published indicating large uncertainty due to different model assumptions and methodologies. In this article we present a first comprehensive comparison of global agro-economic models that have harmonized drivers of population, GDP, and biophysical yields. The comparison allows us to ask two research questions: (1) How much cropland will be used under different socioeconomic and climate change scenarios? (2) How can differences in model results be explained? The comparison includes four partial and six general equilibrium models that differ in how they model land supply and amount of potentially available land. We analyze results of two different socioeconomic scenarios and three climate scenarios (one with constant climate). Most models (7 out of 10) project an increase of cropland of 10–25% by 2050 compared to 2005 (under constant climate), but one model projects a decrease. Pasture land expands in some models, which increase the treat on natural vegetation further. Across all models most of the cropland expansion takes place in South America and sub-Saharan Africa. In general, the strongest differences in model results are related to differences in the costs of land expansion, the endogenous productivity responses, and the assumptions about potential cropland.
  Hermann Lotze-Campen , Martin von Lampe , Page Kyle , Shinichiro Fujimori , Petr Havlik , Hans van Meijl , Tomoko Hasegawa , Alexander Popp , Christoph Schmitz , Andrzej Tabeau , Hugo Valin , Dirk Willenbockel and Marshall Wise
  Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Intercomparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, for example, from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an ambitious mitigation scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in a high-emission scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility