Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by A.M.A. Rani
Total Records ( 5 ) for A.M.A. Rani
  T.V.V.L.N. Rao , A.M.A. Rani , T. Nagarajan and F.M. Hashim
  This study presents an analysis of journal bearing lubricated with couple stress fluids considering the effects of a layer adhered to bearing surface. The modified classical Reynold’s equation is derived considering the effects of surface layer and couple stress fluids. In the present study, the effects of couple stresses on the steady state journal bearing performance characteristics are analyzed based on Stokes micro-continuum theory. The Reynold’s boundary conditions are used in the analysis. Results of non-dimensional load capacity and coefficient of friction are presented.
  K. Altaf , V.R. Raghavan and A.M.A. Rani
  Injection Mold Thermal Management is a critical issue in plastic injection molding process and has major effects on production cycle times that is directly linked with cost and also has effects on part quality. For this reason, cooling system design has great significance for plastic products industry by injection molding. It is crucial not only to reduce molding cycle time but also it considerably affects the productivity and quality of the product. The cooling channels in injection molding have circular cross section due to the conventional manufacturing technique of drilling. In Rapid Prototyping and Tooling techniques of fabricating conformal cooling channels, the channel cross section is again circular. In circular channel, there can be a problem that the distance from the edges of channel to the cavity is not constant and it is variable even for conformal channels. This can give problem of not having even heat dissipation. In this study, injection mold designing and thermal simulations were performed and comparison is presented between molds having cooling channels of circular cross section with mold with profiled cross section channels. Thermal analysis and simulations can effectively predict the performance of circular channels as compared to profiled channels. Some concepts are also presented for the manufacturing of molds with circular and profiled channels with the use of metal filled epoxies.
  S. Krishna , T. Nagarajan and A.M.A. Rani
  The purpose of this study is to review the current application areas of Pneumatics Artificial Muscle (PAM) actuator. This article analyses the result of the ongoing theoretical and experimental research on the operational behavior of pneumatic muscle such as muscle structure, as well as data on the generated forces. The speed of response of PAM actuator mostly depends upon its shape and size, pressure inputs and outputs. All these factors have impact on the overall force which is generated by the PAMs. The force generated by PAM purely depends on the rate of pressure added and removal from the actuator and is contractile in nature upon inflation. PAM actuators find wide applications in various facets of robotic equipments and industrial automation. They are easy to manufacture, low cost and can be integrated with human operations without any large scale safety requirements.
  A.T.Z. Mahamat , A.M.A. Rani and Patthi Husain
  In this study, we investigate the possibility of machining cemented tungsten carbide WC+6% Co by using copper. Tungsten carbide is hard and brittle with low thermal conductivity and low thermal expansion. The high resistant to abrasive wear and high melting point are the main reason for the selection of these materials for large number of applications such as machining tool and die material. The hardness of WC+Co primarily depends on the average grain size and cobalt content. The difficulty when machining cemented tungsten carbide comes from the thermal stress. The micro cracks enlarge, which leads to macro crack and fragmentation. This can be referred to the low thermal expansion, thermal conductivity and brittleness, which create a high thermal stress. Generally, cooling and removal of the cracked particles are difficult. In order to develop the optimal machining process for the desirable machining response, L9 Taguchi Orthogonal Array (OA) were used. This orthogonal array is used for optimization of the following variables; Peak-Current (IP), pulse ON-Time (ON), pulse OFF-Time (OFF) and Gap-Voltage (GAP). The results show that it’s possible to EDMing WC-Co using copper electrode at very low energy setting but at the expense of material removal rate MRR.
  T.V.V.L.N. Rao , A.M.A. Rani , T. Nagarajan and F.M. Hashim
  The present study evaluates the effects of two-layered long porous journal bearing configuration on improvement in load capacity and reduction in coefficient of friction. The Brinkman model is utilized to model the flow in the porous region. A modified form of Reynolds equation is derived considering two-layered porous region adjacent to the bearing surface. The non-dimensional pressure and shear stress expressions are obtained using the Reynolds boundary conditions. Results of non-dimensional load capacity and coefficient of friction are presented as a function of permeability and thickness of porous layers. Based on the results presented in the study, a low permeability porous layer that adheres to high permeability porous layer on bearing surface could significantly enhance load capacity and reduce coefficient of friction.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility