Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by A. F Chen
Total Records ( 2 ) for A. F Chen
  L He , H Zeng , F Li , J Feng , S Liu , J Liu , J Yu , J Mao , T Hong , A. F Chen , X Wang and G. Wang
 

Hyperhomocysteinemia (HHcy) has been associated with impaired vascular endothelial function. Our previous study demonstrated significantly higher secretion of the chemokine monocyte chemoattractant protein-1 from monocytes in response to lipopolysaccharide in patients with HHcy. In the present study, we investigated whether coronary endothelial function was damaged in patients with chronic HHcy (plasma level of homocysteine >15 µmol/l) and, if so, whether this impaired endothelial function is induced by the uncoupling of endothelial nitric oxide synthase (eNOS). When tetrahydrobiopterin levels are inadequate, eNOS is no longer coupled to l-arginine oxidation, which results in reactive oxygen species rather than nitric oxide production, thereby inducing vascular endothelial dysfunction. The 71 participants were divided into two groups, control (n = 50) and HHcy (n = 21). Quantification of coronary flow velocity reserve (CFVR) was after rest and after adenosine administration done by noninvasive Doppler echocardiography. Plasma levels of nitric oxide and tetrahydrobiopterin were significantly lower in patients with HHcy than in controls (99.54 ± 32.23 vs. 119.50 ± 37.68 µmol/l and 1.43 ± 0.46 vs. 1.73 ± 0.56 pmol/ml, all P < 0.05). Furthermore, CFVR was significantly lower in the HHcy than the control group (2.76 ± 0.49 vs. 3.09 ± 0.52, P < 0.05). In addition, plasma level of homocysteine was negatively correlated with CFVR. Chronic HHcy may contribute to coronary artery disease by inducing dysfunction of the coronary artery endothelium. The uncoupling of eNOS induced by HHcy in patients with chronic HHcy may explain this adverse effect in part.

  S Laing , G Wang , T Briazova , C Zhang , A Wang , Z Zheng , A Gow , A. F Chen , S Rajagopalan , L. C Chen , Q Sun and K. Zhang
 

Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases. However, a precise understanding of the biological mechanism underlying PM-associated toxicity and pathogenesis remains elusive. Here, we investigated the impact of PM exposure in intracellular stress signaling pathways with animal models and cultured cells. Inhalation exposure of the mice to environmentally relevant fine particulate matter (aerodynamic diameter < 2.5 µm, PM2.5) induces endoplasmic reticulum (ER) stress and activation of unfolded protein response (UPR) in the lung and liver tissues as well as in the mouse macrophage cell line RAW264.7. Ambient PM2.5 exposure activates double-strand RNA-activated protein kinase-like ER kinase (PERK), leading to phosphorylation of translation initiation factor eIF2 and induction of C/EBP homologous transcription factor CHOP/GADD153. Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen species (ROS) and is critical for PM2.5-induced apoptosis. Furthermore, PM2.5 exposure can activate ER stress sensor IRE1, but it decreases the activity of IRE1 in splicing the mRNA encoding the UPR trans-activator X-box binding protein 1 (XBP1). Together, our study suggests that PM2.5 exposure differentially activates the UPR branches, leading to ER stress-induced apoptosis through the PERK-eIF2-CHOP UPR branch. This work provides novel insights into the cellular and molecular basis by which ambient PM2.5 exposure elicits its cytotoxic effects that may be related to air pollution-associated pathogenesis.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility