Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by A. Al-Busaidi
Total Records ( 2 ) for A. Al-Busaidi
  M. Irshad , M. Inoue , M. Ashraf and A. Al-Busaidi
  The natural resource base of land, water and vegetation in arid and semi arid areas is highly fragile and greatly vulnerable to degradation especially in the developing countries. The demand for water is constantly increasing as a result of population growth and the expansion of agriculture and industry. Fresh water resources are limited in the arid and semi-arid areas whereas the existing water resources are often overused and misused. The lack of water management in the arid areas generated numerous economic, social and ecological issues. Agriculture currently accounts for nearly 70-80% of water consumption in the developing countries. The productivity of water use in agriculture needs to enhance in order both to avoid exacerbating the water crisis and to prevent considerable food shortages. More efficient use of existing water resources and adequate management of soils could prove to be the effective tool for improving arid lands. The technologies, skills and capital resources required to overcome the poor and extreme distribution of water resources through storage and transfer are not available and widely used. As a consequence there is critically low access to water for agriculture, drinking and sanitation and the environment. Poor access to water is among the leading factors hindering sustainable development in semi-arid and arid regions. Conventional irrigation management should be revised to ensure maximum water productivity instead of land productivity for dry farming systems. Under conditions of increasing water scarcity, the key to sustaining rural livelihoods is improving the productivity and reliability of rainfed agriculture by using limited rainfall more productively, through optimal on-farm soil, water and crop management practices that conserve soil moisture and increase water use efficiency. Conserving and augmenting water supplies through rainwater harvesting and precision irrigation provide new opportunity for productive dry land farming. Without action, it has been reported that in 2025, two thirds of the world’s population would live in water stressed areas. One of the actions necessary to help avert water crisis is to educate people as to the value of this precious resource. A productive water-use system in arid and semiarid areas, where the annual rainfall is scanty, the evaporation rate is higher than precipitation and characterizes insufficient renewable water resources, is the urgent need of the farmers. This study reviews options available for improved utilization and management of water resources and examines the future prospects of sustainable agriculture in water scarce areas.
  A. Al-Busaidi , T. Yamamoto and M. Irshad
  This investigation was aimed to evaluate the effects of zeolite in conjunction with seawater irrigation on barley (Hordeum vulgare L.) growth and salt composition of soil. A sand dune soil was amended with Ca-type zeolite at the rate of 1 and 5% and the seawater was diluted up to the electrical conductivity of 3 and 16 dS m-1. Present results showed that zeolite application significantly increased water holding capacity of the soil and accumulated more salts. The zeolite mixed soils improved plant growth compared to the un-amended control. Higher saline water significantly suppressed the growth of barley than the water with low salinity. The restricted plant growth due to the effects of specific ion or Na+/Ca2+ imbalance may be ameliorated using Ca-type zeolite. We may conclude that soil amendment with zeolite could alleviate the adverse effects of salts on plants following irrigation with higher saline water.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility