Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by A. A Chumanevich
Total Records ( 3 ) for A. A Chumanevich
  Y Jin , A. B Hofseth , X Cui , A. J Windust , D Poudyal , A. A Chumanevich , L. E Matesic , N. P Singh , M Nagarkatti , P. S Nagarkatti and L. J. Hofseth
 

Ulcerative colitis is a dynamic, chronic inflammatory condition associated with an increased colon cancer risk. Inflammatory cell apoptosis is a key mechanism regulating ulcerative colitis. American ginseng (AG) is a putative antioxidant that can suppress hyperactive immune cells. We have recently shown that AG can prevent and treat mouse colitis. Because p53 levels are elevated in inflammatory cells in both mouse and human colitis, we tested the hypothesis that AG protects from colitis by driving inflammatory cell apoptosis through a p53 mechanism. We used isogenic p53+/+ and p53–/– inflammatory cell lines as well as primary CD4+/CD25 effector T cells from p53+/+ and p53–/– mice to show that AG drives apoptosis in a p53-dependent manner. Moreover, we used a dextran sulfate sodium (DSS) model of colitis in C57BL/6 p53+/+ and p53–/– mice to test whether the protective effect of AG against colitis is p53 dependent. Data indicate that AG induces apoptosis in p53+/+ but not in isogenic p53–/– cells in vitro. In vivo, C57BL/6 p53+/+ mice are responsive to the protective effects of AG against DSS-induced colitis, whereas AG fails to protect from colitis in p53–/– mice. Furthermore, terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling of inflammatory cells within the colonic mesenteric lymph nodes is elevated in p53+/+ mice consuming DSS + AG but not in p53–/– mice consuming DSS + AG. Results are consistent with our in vitro data and with the hypothesis that AG drives inflammatory cell apoptosis in vivo, providing a mechanism by which AG protects from colitis in this DSS mouse model. Cancer Prev Res; 3(3); 339–47

  X Cui , Y Jin , D Poudyal , A. A Chumanevich , T Davis , A Windust , A Hofseth , W Wu , J Habiger , E Pena , P Wood , M Nagarkatti , P. S Nagarkatti and L. Hofseth
 

We have recently shown that American ginseng (AG) prevents and treats mouse colitis. Because both mice and humans with chronic colitis have a high colon cancer risk, we tested the hypothesis that AG can be used to prevent colitis-driven colon cancer. Using the azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model of ulcerative colitis, we show that AG can suppress colon cancer associated with colitis. To explore the molecular mechanisms of the anticancer effects of AG, we also carried out antibody array experiments on colon cells isolated at a precancerous stage. We found there were 82 protein end points that were either significantly higher (41 proteins) or significantly lower (41 proteins) in the AOM + DSS group compared with the AOM-alone (control) group. In contrast, there were only 19 protein end points that were either significantly higher (10 proteins) or significantly lower (9 proteins) in the AOM + DSS + AG group compared with the AOM-alone (control) group. Overall, these results suggest that AG keeps the colon environment in metabolic equilibrium when mice are treated with AOM + DSS and gives insight into the mechanisms by which AG protects from colon cancer associated with colitis.

  A. A Chumanevich , D Poudyal , X Cui , T Davis , P. A Wood , C. D Smith and L. J. Hofseth
 

Sphingolipid metabolism is driven by inflammatory cytokines. These cascade of events include the activation of sphingosine kinase (SK), and subsequent production of the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). Overall, S1P is one of the crucial components in inflammation, making SK an excellent target for the development of new anti-inflammatory drugs. We have recently shown that SK inhibitors suppress colitis and hypothesize here that the novel SK inhibitor, ABC294640, prevents the development of colon cancer. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model, there was a dose-dependent decrease in tumor incidence with SK inhibitor treatment. The tumor incidence (number of animals with tumors per group) in the vehicle, ABC294640 (20 mg/kg) and ABC294640 (50 mg/kg) groups were 80, 40 and 30%, respectively. Tumor multiplicity (number of tumors per animal) also decreased from 2.1 ± 0.23 tumors per animal in the AOM + DSS + vehicle group to 1.2 ± 0 tumors per animal in the AOM + DSS + ABC294640 (20 mg/kg) and to 0.8 ± 0.4 tumors per animal in the AOM + DSS + ABC294640 (50 mg/kg) group. Importantly, with ABC294640, there were no observed toxic side effects. To explore mechanisms, we isolated cells from the colon (CD45–, representing primarily colon epithelial cells) and (CD45+, representing primarily colon inflammatory cells) then measured known targets of SK that control cell survival. Results are consistent with the hypothesis that the inhibition of SK activity by our novel SK inhibitor modulates key pathways involved in cell survival and may be a viable treatment strategy for the chemoprevention colitis-driven colon cancer.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility