Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by A Rosenzweig
Total Records ( 3 ) for A Rosenzweig
  D. E Sosnovik , R Wang , G Dai , T Wang , E Aikawa , M Novikov , A Rosenzweig , R. J Gilbert and V. J. Wedeen

Background— Changes in myocardial microstructure are important components of the tissue response to infarction but are difficult to resolve with current imaging techniques. A novel technique, diffusion spectrum MRI tractography (DSI tractography), was thus used to image myofiber architecture in normal and infarcted myocardium. Unlike diffusion tensor imaging, DSI tractography resolves multiple myofiber populations per voxel, thus generating accurate 3D tractograms, which we present in the myocardium for the first time.

Methods and Results— DSI tractography was performed at 4.7 T in excised rat hearts 3 weeks after left coronary artery ligation (n=4) and in 4 age-matched controls. Fiber architecture in the control hearts varied smoothly from endocardium to epicardium, producing a symmetrical array of crossing helical structures in which orthogonal myofibers were separated by fibers with intermediate helix angles. Fiber architecture in the infarcted hearts was severely perturbed. The infarct boundary in all cases was highly irregular and punctuated repeatedly by residual myofibers extending from within the infarct to the border zones. In all infarcts, longitudinal myofibers extending toward the basal-anterior wall and transversely oriented myofibers extending toward the septum lay in direct contact with each other, forming nodes of orthogonal myofiber intersection or contact.

Conclusions— DSI tractography resolves 3D myofiber architecture and reveals a complex network of orthogonal myofibers within infarcted myocardium. Meshlike networks of orthogonal myofibers in infarcted myocardium may resist mechanical remodeling but also probably increase the risk for lethal reentrant arrhythmias. DSI tractography thus provides a new and important readout of tissue injury after myocardial infarction.

  D. E Sosnovik , E Garanger , E Aikawa , M Nahrendorf , J. L Figuiredo , G Dai , F Reynolds , A Rosenzweig , R Weissleder and L. Josephson

Background— A novel dual-contrast molecular MRI technique to image both cardiomyocyte apoptosis and necrosis in vivo within 4 to 6 hours of ischemia is presented. The technique uses the annexin-based nanoparticle AnxCLIO-Cy5.5 (apoptosis) and simultaneous delayed-enhancement imaging with a novel gadolinium chelate, Gd-DTPA-NBD (necrosis).

Methods and Results— Mice with transient coronary ligation were injected intravenously at the onset of reperfusion with AnxCLIO-Cy5.5 (n=7) or the control probe Inact_CLIO-Cy5.5 (n=6). T2*-weighted MR images (9.4 T) were acquired within 4 to 6 hours of reperfusion. The contrast-to-noise ratio between injured and uninjured myocardium was measured. The mice were then injected with Gd-DTPA-NBD, and delayed-enhancement imaging was performed within 10 to 30 minutes. Uptake of AnxCLIO-Cy5.5 was most prominent in the midmyocardium and was significantly greater than that of Inact_CLIO-Cy5.5 (contrast-to-noise ratio, 8.82±1.5 versus 3.78±1.1; P<0.05). Only 21±3% of the myocardium with accumulation of AnxCLIO-Cy5.5 showed delayed-enhancement of Gd-DTPA-NBD. Wall thickening was significantly reduced in segments with delayed enhancement and/or transmural accumulation of AnxCLIO-Cy5.5 (P<0.001). Fluorescence microscopy of AnxCLIO-Cy5.5 and immunohistochemistry of Gd-DTPA-NBD confirmed the presence of large numbers of apoptotic but potentially viable cardiomyocytes (AnxCLIO-Cy5.5 positive, Gd-DTPA-NBD negative) in the midmyocardium.

Conclusions— A novel technique to image cardiomyocyte apoptosis and necrosis in vivo within 4 to 6 hours of injury is presented and reveals large areas of apoptotic but viable myocardium in the midmyocardium. Strategies to salvage the numerous apoptotic but potentially viable cardiomyocytes in the midmyocardium in acute ischemia should be investigated.

  X Song , Y Kusakari , C. Y Xiao , S. D Kinsella , M. A Rosenberg , M Scherrer Crosbie , K Hara , A Rosenzweig and T. Matsui

Previous studies have suggested that inhibition of the mammalian target of rapamycin (mTOR) by rapamycin suppresses myocardial hypertrophy. However, the role of mTOR in the progression of cardiac dysfunction in pathological hypertrophy has not been fully defined. Interestingly, recent reports indicate that the inflammatory response, which plays an important role in the development of heart failure, is enhanced by rapamycin under certain conditions. Our aim in this study was to determine the influence of mTOR on pathological hypertrophy and to assess whether cardiac mTOR regulates the inflammatory response. We generated transgenic mice with cardiac-specific overexpression of wild-type mTOR (mTOR-Tg). mTOR-Tg mice were protected against cardiac dysfunction following left ventricular pressure overload induced by transverse aortic constriction (TAC) (P < 0.01) and had significantly less interstitial fibrosis compared with littermate controls (WT) at 4 wk post-TAC (P < 0.01). In contrast, TAC caused cardiac dysfunction in WT. At 1 wk post-TAC, the proinflammatory cytokines interleukin (IL)-1β and IL-6 were significantly increased in WT mice but not in mTOR-Tg mice. To further characterize the effects of mTOR activation, we exposed HL-1 cardiomyocytes transfected with mTOR to lipopolysaccharide (LPS). mTOR overexpression suppressed LPS-induced secretion of IL-6 (P < 0.001), and the mTOR inhibitors rapamycin and PP242 abolished this inhibitory effect of mTOR. In addition, mTOR overexpression reduced NF-B-regulated transcription in HL-1 cells. These data suggest that mTOR mitigates adverse outcomes of pressure overload and that this cardioprotective effect of mTOR is mediated by regulation of the inflammatory reaction.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility