Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by A Li
Total Records ( 16 ) for A Li
  K. J Cummings , K. G Commons , K. C Fan , A Li and E. E. Nattie
  The medullary 5-HT system has potent effects on heart rate and breathing in adults. We asked whether this system mitigates the respiratory instability and bradycardias frequently occurring during the neonatal period. 5,7-Dihydroxytryptamine (5,7-DHT) or vehicle was administered to rat pups at postnatal day 2 (P2), and we then compared the magnitude of bradycardias occurring with disruptions to eupnea in treated and vehicle control littermates at P5–6 and P10–12. We then used a novel method that would allow accurate assessment of the ventilatory and heart rate responses to near square-wave challenges of hypoxia (10% O2), hypercapnia (5 and 8% CO2 in normoxia and hyperoxia), and asphyxia (8% CO2-10% O2), and to the induction of the Hering-Breuer inflation reflex (HBR), a potent, apnea-inducing reflex in newborns. The number of 5-HT-positive neurons was reduced ~80% by drug treatment. At both ages, lesioned animals had considerably larger bradycardias during brief apnea; at P5–6, average and severe events were ~50% and 70% greater, respectively, in lesioned animals (P = 0.002), whereas at P10–12, events were ~ 23% and 50% greater (P = 0.018). However, lesioning had no effect on the HR responses to sudden gas challenge or the HBR. At P5–6, lesioned animals had reduced breathing frequency and ventilation (Ve), but normal Ve relative to metabolic rate (Ve/Vo2). At P10–12, lesioned animals had a more unstable breathing pattern (P = 0.04) and an enhanced Ve response to moderate hypercapnia (P = 0.007). Within the first two postnatal weeks, the medullary 5-HT system plays an important role in cardiorespiratory control, mitigating spontaneous bradycardia, stabilizing the breathing pattern, and dampening the hypercapnic Ve response.
  J Neumann , J Bras , E Deas , S. S O'Sullivan , L Parkkinen , R. H Lachmann , A Li , J Holton , R Guerreiro , R Paudel , B Segarane , A Singleton , A Lees , J Hardy , H Houlden , T Revesz and N. W. Wood
 

Mutations in the glucocerebrosidase gene (GBA) are associated with Gaucher's disease, the most common lysosomal storage disorder. Parkinsonism is an established feature of Gaucher's disease and an increased frequency of mutations in GBA has been reported in several different ethnic series with sporadic Parkinson's disease. In this study, we evaluated the frequency of GBA mutations in British patients affected by Parkinson's disease. We utilized the DNA of 790 patients and 257 controls, matched for age and ethnicity, to screen for mutations within the GBA gene. Clinical data on all identified GBA mutation carriers was reviewed and analysed. Additionally, in all cases where brain material was available, a neuropathological evaluation was performed and compared to sporadic Parkinson's disease without GBA mutations. The frequency of GBA mutations among the British patients (33/790 = 4.18%) was significantly higher (P = 0.01; odds ratio = 3.7; 95% confidence interval = 1.12–12.14) when compared to the control group (3/257 = 1.17%). Fourteen different GBA mutations were identified, including three previously undescribed mutations, K7E, D443N and G193E. Pathological examination revealed widespread and abundant -synuclein pathology in all 17 GBA mutation carriers, which were graded as Braak stage of 5–6, and had McKeith's limbic or diffuse neocortical Lewy body-type pathology. Diffuse neocortical Lewy body-type pathology tended to occur more frequently in the group with GBA mutations compared to matched Parkinson's disease controls. Clinical features comprised an early onset of the disease, the presence of hallucinations in 45% (14/31) and symptoms of cognitive decline or dementia in 48% (15/31) of patients. This study demonstrates that GBA mutations are found in British subjects at a higher frequency than any other known Parkinson's disease gene. This is the largest study to date on a non-Jewish patient sample with a detailed genotype/phenotype/pathological analyses which strengthens the hypothesis that GBA mutations represent a significant risk factor for the development of Parkinson's disease and suggest that to date, this is the most common genetic factor identified for the disease.

  Y Sumi , T Woehrle , Y Chen , Y Yao , A Li and W. G. Junger
 

Formyl peptide receptor-induced chemotaxis of neutrophils depends on the release of ATP and autocrine feedback through purinergic receptors. Here, we show that adrenergic receptor signaling requires similar purinergic feedback mechanisms. Real-time RT-PCR analysis revealed that human embryonic kidney (HEK)-293 cells express several subtypes of adrenergic (1-, 2-, and β-receptors), adenosine (P1), and nucleotide receptors (P2). Stimulation of Gq-coupled 1-receptors caused release of cellular ATP and MAPK activation, which was blocked by inhibiting P2 receptors with suramin. Stimulation of Gi-coupled 2-receptors induced weak ATP release, while Gs-coupled β-receptors caused accumulation of extracellular ADP and adenosine. β-Receptors triggered intracellular cAMP signaling, which was blocked by scavenging extracellular adenosine with adenosine deaminase or by inhibiting A2a adenosine receptors with SCH58261. These findings suggest that adrenergic receptors require purinergic receptors to elicit downstream signaling responses in HEK-293 cells. We evaluated the physiological relevance of these findings using mouse aorta tissue rings. Stimulation of 1-receptors induced ATP release and tissue contraction, which was reduced by removing extracellular ATP with apyrase or in the absence of P2Y2 receptors in aorta rings from P2Y2 receptor knockout mice. We conclude that, like formyl peptide receptors, adrenergic receptors require purinergic feedback mechanisms to control complex physiological processes such as smooth muscle contraction and regulation of vascular tone.

  A Li , C. T Leung , K Peterson Yantorno , C. H Mitchell and M. M. Civan
 

ATP release by nonpigmented (NPE) and pigmented (PE) ciliary epithelial cells is the enabling step in purinergic regulation of aqueous humor formation, but the release pathways are unknown. We measured ATP release from primary cultures of bovine mixed NPE and PE (bCE) cells and transformed bovine NPE and PE cells, using the luciferin-luciferase reaction. Hypotonicity-triggered bCE ATP release was inhibited by the relatively selective blocker of pannexin-1 (PX1) hemichannels (probenecid, 1 mM, 47 ± 2%), by a connexin inhibitor (heptanol, 1 mM, 49 ± 4%), and by an inhibitor of vesicular release (bafilomycin A1, 25 ± 2%), but not by the P2X7 receptor (P2RX7) antagonist KN-62. Bafilomycin A1 acts by reducing the driving force for uptake of ATP from the cytosol into vesicles. The reducing agent dithiothreitol reduced probenecid-blockable ATP release. Similar results were obtained with NPE and PE cell lines. Pannexins PX1–3, connexins Cx43 and Cx40, and P2RX7 were identified in native cells and cell lines by RT-PCR. PX1 mRNA expression was confirmed by Northern blots; its quantitative expression was comparable to that of Cx43 by real-time PCR. Heterologous expression of bovine PX1 in HEK293T cells enhanced swelling-activated ATP release, inhibitable by probenecid. We conclude that P2RX7-independent PX1 hemichannels, Cx hemichannels, and vesicular release contribute comparably to swelling-triggered ATP release. The relatively large response to dithiothreitol raises the possibility that the oxidation-reduction state is a substantial regulator of PX1-mediated ATP release from bovine ciliary epithelial cells.

  B Gu , P Sun , Y Yuan , R. C Moraes , A Li , A Teng , A Agrawal , C Rheaume , V Bilanchone , J. M Veltmaat , K. I Takemaru , S Millar , E. Y. H.P Lee , M. T Lewis , B Li and X. Dai
 

Recent studies have unequivocally identified multipotent stem/progenitor cells in mammary glands, offering a tractable model system to unravel genetic and epigenetic regulation of epithelial stem/progenitor cell development and homeostasis. In this study, we show that Pygo2, a member of an evolutionarily conserved family of plant homeo domain–containing proteins, is expressed in embryonic and postnatal mammary progenitor cells. Pygo2 deficiency, which is achieved by complete or epithelia-specific gene ablation in mice, results in defective mammary morphogenesis and regeneration accompanied by severely compromised expansive self-renewal of epithelial progenitor cells. Pygo2 converges with Wnt/β-catenin signaling on progenitor cell regulation and cell cycle gene expression, and loss of epithelial Pygo2 completely rescues β-catenin–induced mammary outgrowth. We further describe a novel molecular function of Pygo2 that is required for mammary progenitor cell expansion, which is to facilitate K4 trimethylation of histone H3, both globally and at Wnt/β-catenin target loci, via direct binding to K4-methyl histone H3 and recruiting histone H3 K4 methyltransferase complexes.

  D Trageser , I Iacobucci , R Nahar , C Duy , G von Levetzow , L Klemm , E Park , W Schuh , T Gruber , S Herzog , Y. m Kim , W. K Hofmann , A Li , C. T Storlazzi , H. M Jack , J Groffen , G Martinelli , N Heisterkamp , H Jumaa and M. Muschen
 

B cell lineage acute lymphoblastic leukemia (ALL) arises in virtually all cases from B cell precursors that are arrested at pre–B cell receptor–dependent stages. The Philadelphia chromosome–positive (Ph+) subtype of ALL accounts for 25–30% of cases of adult ALL, has the most unfavorable clinical outcome among all ALL subtypes and is defined by the oncogenic BCR-ABL1 kinase and deletions of the IKAROS gene in >80% of cases. Here, we demonstrate that the pre–B cell receptor functions as a tumor suppressor upstream of IKAROS through induction of cell cycle arrest in Ph+ ALL cells. Pre–B cell receptor–mediated cell cycle arrest in Ph+ ALL cells critically depends on IKAROS function, and is reversed by coexpression of the dominant-negative IKAROS splice variant IK6. IKAROS also promotes tumor suppression through cooperation with downstream molecules of the pre–B cell receptor signaling pathway, even if expression of the pre–B cell receptor itself is compromised. In this case, IKAROS redirects oncogenic BCR-ABL1 tyrosine kinase signaling from SRC kinase-activation to SLP65, which functions as a critical tumor suppressor downstream of the pre–B cell receptor. These findings provide a rationale for the surprisingly high frequency of IKAROS deletions in Ph+ ALL and identify IKAROS-mediated cell cycle exit as the endpoint of an emerging pathway of pre–B cell receptor–mediated tumor suppression.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility