Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Research Journal of Botany
Year: 2015  |  Volume: 10  |  Issue: 1  |  Page No.: 1 - 13

Identification of Terminal Flowering1 (TFL1) Genes Associated with the Teak (Tectona grandis) Floral Development Regulation Using RNA-seq

D.S. Diningrat, S.M. Widiyanto, A. Pancoro, Iriawati, D. Shim, B. Panchangam, N. Zembower and J.E. Carlson    

Abstract: Teak is woody plants; a member of the Lamiaceae family. Teak is a plant that has a very high quality timber. Teak has constraints due to low reproductive rates and slow growth of the wood after entering the reproductive phase. Teak genetic engineering efforts by delaying flowering time was facing difficulties due to the lack of information about the role of genes regulating flowering identity in teak. Teak has indeterminate inflorescence same as the model plant Arabidopsis. In Arabidopsis, the role of Terminal Flowering 1 (TFL1) gene as a member of the Floral Meristem Identity (FMI) in regulating the vegetative to generative transition is by down regulation, so that, the downstream of the FMI genes up-regulation which resulted in the development towards the formation of flowers. In teak, this mechanism is not well known. The development of NGS technology-transcriptome analysis has allowed us to identify specific interest genes from non-model plant rapidly and cheaply relative. To determine the activity of the interest genes in silico can be undertaken with RNA-seq and QRT-PCR analysis approaches. In this study, it is identified that, TFL1 genes in teak with NGS transcriptome analysis approach that is annotated with S. lycopersicum. The TFL1 genes obtained from EST teak derived from vegetative and generative shoots buds RNA. The TFL1 genes activities on the tissues are done with RNA-seq analysis approach in order to obtain Digitally Gene Expression (DGE) of TFL1. The TFL1 gene activity was then validated in silico by QRT-PCR analysis. The results of the analysis showed that the TFL1-14 gene activity equivalent to the TFL1 gene activity in the model plant.

Cited References   |    Fulltext    |   Related Articles   |   Back
  Related Articles

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility