Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Research Journal of Applied Sciences
Year: 2017  |  Volume: 12  |  Issue: 1  |  Page No.: 78 - 89

Investigation on Power Conditioning Electronic Interface Circuit for Piezoelectric Vibration Based Energy Harvesting System

Shafii A. Wahab, Shabiul Islam, M.S. Bhuyan, S. Jahariah and Sawal H. Md Ali    

Abstract: The development of wireless sensor network has been driven by recent new advance technologies in low-power energy integrated micro devices. The scattered nature of the sensor topologies requires its own power but the main obstacle to the battery power operation is limited resources. As a result, it must be replaced when it is exhausted. Moreover, it is difficult if the sensor is embedded in a particular object and its environment are harmful for the battery replacement and also require higher cost. To overcome the problem, natural resources known as wind energy, vibration, temperature and solar, etc., can be considered as input sources. However, vibration is the best energy source because it can be found anywhere and according to the use of piezoelectric materials that have the ability to convert mechanical energy into electrical energy. The proposed research work on power conditioning circuit will be investigated, modelled and designed using synchronized switch harvesting on inductortechnique from piezoelectric vibration. In this regards, the power conditioning circuitenergy harvester can generate more energy and then stores the generated power into large reservoir capacitance, followed by combination of a charge pump-type circuit and etc. The development of the power conditioning circuit energy harvester will be modelled and simulated using PSPICE Software. Later on, the power conditioning circuit harvester will be implemented into printed circuit board layout. Finally, the comparison will be given by the power conditioning circuit performance between the simulated results in PSPICE and the validated hardware implementation into printed circuit board layout. The developed power conditioning circuit harvester can be used to replace the external battery for powering-up the low-power micro devices.

Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

 
 
 
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility