Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Pakistan Journal of Biological Sciences
Year: 2019  |  Volume: 22  |  Issue: 9  |  Page No.: 427 - 434

Broad-spectrum Antimicrobial Activity of Purified Hemocyanin Subunit IIIA Isolated from Asian Horseshoe Crab, Tachypleus gigas

J.J. Jolly, S.K. Dzulkiply, M.A. Yusof, N.A. Kamaruding and N. Ismail    

Abstract: Background and Objectives: Hemocyanin Subunit IIIA is believed to possess antimicrobial properties, but its efficacy against microbial pathogens is still unclarified. Thus, this study aimed to determine antimicrobial activities of hemocyanin subunit IIIA and to identify the best activator of this protein. Materials and Methods: The hemocyanin was partially purified using spin column affinity, its fraction was applied to Hi-Prep Sephacryl Exclusion 26/60 2-200 HR column, followed by Hi-Prep 26/10 Desalting Column on fast protein liquid chromatography. The purity of hemocyanin was validated by Matrix Assisted Laser Desorption Ionization-Time of Flight/Mass Spectrometry. The antimicrobial activity was performed by Disc Diffusion Test. Results: Purified hemocyanin subunit IIIA was identified to have a molecular weight of 72.9 kDa. SDS was found to be the best activator of hemocyanin, as indicated by elevated level of phenoloxidase. As for antimicrobial activity, hemocyanin was minimally inhibited by all bacteria strains tested (Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae), with relatively lower Minimum Inhibitory Concentration (MIC) at 0.005 g mL1, than recorded MIC for fungal test strains. Two fungal strains (Penicillium sp. and A. niger) show susceptible response to phenoloxidase using MgSO4 as inducer. Whereas, lysate-treated CaCl2 induced susceptibility only to A. niger. Conclusion: Hemocyanin shows better antimicrobial activity than phenoloxidase because of its broad-spectrum activity against bacterial and fungal strains tested. Hence, the hemocyanin may potentially become a new antimicrobial candidate to be discovered for a future use in treatment of resistant bacteria.

Cited References   |    Fulltext    |   Related Articles   |   Back
  Related Articles

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility