Search. Read. Cite.

Easy to search. Easy to read. Easy to cite with credible sources.

Physiological Genomics

Year: 2009  |  Volume: 37  |  Issue: 3  |  Page No.: 199 - 210

Uncovering multiple molecular targets for caffeine using a drug target validation strategy combining A2A receptor knockout mice with microarray profiling

L Yu, J. E Coelho, X Zhang, Y Fu, A Tillman, U Karaoz, B. B Fredholm, Z Weng and J. F. Chen

Abstract

Caffeine is the most widely consumed psychoactive substance and has complex pharmacological actions in brain. In this study, we employed a novel drug target validation strategy to uncover the multiple molecular targets of caffeine using combined A2A receptor (A2AR) knockouts (KO) and microarray profiling. Caffeine (10 mg/kg) elicited a distinct profile of striatal gene expression in WT mice compared with that by A2AR gene deletion or by administering caffeine into A2AR KO mice. Thus, A2ARs are required but not sufficient to elicit the striatal gene expression by caffeine (10 mg/kg). Caffeine (50 mg/kg) induced complex expression patterns with three distinct sets of striatal genes: 1) one subset overlapped with those elicited by genetic deletion of A2ARs; 2) the second subset elicited by caffeine in WT as well as A2AR KO mice; and 3) the third subset elicited by caffeine only in A2AR KO mice. Furthermore, striatal gene sets elicited by the phosphodiesterase (PDE) inhibitor rolipram and the GABAA receptor antagonist bicucullin, overlapped with the distinct subsets of striatal genes elicited by caffeine (50 mg/kg) administered to A2AR KO mice. Finally, Gene Set Enrichment Analysis reveals that adipocyte differentiation/insulin signaling is highly enriched in the striatal gene sets elicited by both low and high doses of caffeine. The identification of these distinct striatal gene populations and their corresponding multiple molecular targets, including A2AR, non-A2AR (possibly A1Rs and pathways associated with PDE and GABAAR) and their interactions, and the cellular pathways affected by low and high doses of caffeine, provides molecular insights into the acute pharmacological effects of caffeine in the brain.

View Fulltext