Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Physiological Genomics
Year: 2009  |  Volume: 38  |  Issue: 2  |  Page No.: 158 - 168

Reciprocal backcross mice confirm major loci linked to hyperoxic acute lung injury survival time

D. R Prows, A. V Winterberg, W. J Gibbons, B. B Burzynski, C Liu and T. G. Nick    

Abstract:

Morbidity and mortality associated with acute lung injury (ALI) and acute respiratory distress syndrome remain substantial. Although many candidate genes have been tested, a clear understanding of the pathogenesis is lacking, as is our ability to predict individual outcome. Because ALI is a complex disease, single gene approaches cannot easily identify effectors that must be treated concurrently. We employed a strategy to help identify critical genes and gene combinations involved in ALI mortality. Using hyperoxia to induce ALI, a mouse model for genetic analyses of ALI survival time was identified: C57BL/6J (B) mice are sensitive (i.e., die early), whereas 129X1/SvJ (S) mice are significantly more resistant, but with low penetrance. Segregation analysis of reciprocal F2 mice generated from B and S strains revealed significant sex, cross, and parent of origin effects. Quantitative trait locus (QTL) analysis identified five chromosomal regions significantly linked to hyperoxic ALI survival time (named Shali1–Shali5). Further analyses demonstrated that both parental strains contribute resistance alleles to their offspring and that the phenotype demonstrated parent of origin effects. To validate earlier findings, we generated and tested mice from all eight possible B-S-derived backcrosses. Results from segregation and QTL analyses of 935 backcrosses, alone and combined with the previous 840 B-S-derived F2 population, further supported the highly significant QTLs on chromosomes 1 (Shali1) and 4 (Shali2) and confirmed that the sex, cross, and parent of origin all contribute to survival time with hyperoxic ALI.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility