Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Molecular Plant
Year: 2010  |  Volume: 3  |  Issue: 2  |  Page No.: 438 - 466

General Regulatory Patterns of Plant Mineral Nutrient Depletion as Revealed by serat Quadruple Mutants Disturbed in Cysteine Synthesis

M Watanabe, H. M Hubberten, K Saito and R. Hoefgen    

Abstract:

Sulfate is an essential macronutrient for plants. Plants have developed strategies to cope with sulfate deficiency, and other nutrient ion limitations. However, the regulation of these adaptive responses and the coordinating signals that underlie them are still poorly characterized. O-acetylserine (OAS) is a marker metabolite of sulfate starvation and has been speculated to have a signaling function. OAS is synthesized by the enzyme serine acetyltransferase (SERAT), which is encoded by five distinct genes in Arabidopsis. We investigated quadruple knockout mutants of SERAT that retained only one functional isoform. These mutants displayed symptoms of sulfate starvation. Furthermore, some of them displayed phenotypes typical of prolonged sulfate starvation, in particular, developmental programs associated with senescence or stress responses. Thus, we compared metabolite and transcriptome data from these mutants with N-, P-, K-, and S-depleted plants. This revealed many similarities with general nutrient-depletion-induced senescence (NuDIS), indicating the recruitment of existing regulatory programs for nutrient-starvation responses. Several candidate genes that could be involved in these processes were identified, including transcription factors and other regulatory proteins, as well as the functional categories of their target genes. These results outline components of the regulatory network controlling plant development under sulfate stress, forming a basis for further investigations to elucidate the complete network. In turn, this will advance our broader understanding of plant responses to a range of other nutrient stresses.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility