Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Molecular Endocrinology
Year: 2010  |  Volume: 24  |  Issue: 3  |  Page No.: 497 - 510

Glucocorticoid Rapidly Enhances NMDA-Evoked Neurotoxicity by Attenuating the NR2A-Containing NMDA Receptor-Mediated ERK1/2 Activation

L Xiao, C Feng and Y. Chen    

Abstract:

Glucocorticoid (GC) has been shown to affect the neuronal survival/death through a genomic mechanism, but whether or not it does through a nongenomic mechanism is unknown. Using a previously identified GR-deficient primary hippocampal neuron culture, we show here that a 15-min coexposure of N-methyl-d-aspartate (NMDA) with corticosterone at a stress-induced level significantly enhances neuronal death compared to NMDA alone. This enhancing effect of GC can be mimicked by the BSA-conjugated corticosterone, which is plasma membrane impermeable and cannot be blocked by RU38486 spironolactone. Furthermore, using a calcium-imaging technique, we found that B could increase both the percentage of neurons showing a significant increment of intracellular free calcium ([Ca2+]i) due to NMDA stimulation and the amplitude of [Ca2+]i increment in the individual responsive cells. Interestingly, this boosting effect of GC on [Ca2+]i increment could be blocked by the NMDA receptor subunit 2A (NR2A)-specific antagonist [(R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydro-quinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) but not by the NMDA receptor subunit 2B (NR2B)-specific antagonist Ro25-6981. Moreover, we also found that GC can dramatically attenuate the NMDA-induced activation of ERK1/2 without affecting that of p38; and that the NMDA-induced ERK1/2 activation and its attenuation by GC both can be occluded by the NVP-AAM077 but not by Ro25-6981. Consistently, the enhancing effect of GC on NMDA neurotoxicity can also be blocked by NVP-AAM077 and the ERK1/2 inhibitor PD98059 but not by Ro25-6981 and p38 inhibitor SB203580. Indeed, the NMDA neurotoxicity itself can be blocked by Ro25-6981 or SB203580, whereas it is increased by NVP-AAM077 and PD98059. Therefore, it is probable that NMDA triggers a prodeath signaling through the NR2B-p38 MAPK pathway, and a prosurvival signaling through the NR2A-ERK1/2 MAPK pathway, whereas the latter was negatively regulated by rapid GC action. Taken together, the present data suggest a nongenomic action by GC that enhances NMDA neurotoxicity through facilitating [Ca2+]i increment and attenuating the NR2A-ERK1/2-mediated neuroprotective signaling, implicating a novel pathway underlying the regulatory effect of GC on neuronal survival/death.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility