Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Molecular Endocrinology
Year: 2010  |  Volume: 24  |  Issue: 1  |  Page No.: 148 - 160

Retinoic Acid Is a Cofactor for Translational Regulation of Vascular Endothelial Growth Factor in Human Endometrial Stromal Cells

N Sidell, Y Feng, L Hao, J Wu, J Yu, M. A Kane, J. L Napoli and R. N. Taylor    

Abstract:

Vascular endothelial growth factor (VEGF) and endometrial angiogenesis play a critical role in successful embryonic implantation. Despite many studies of the effects of estrogen and progesterone on VEGF expression, its focal regulation at the site of implantation is unknown. Retinoic acid (RA) has been reported to regulate VEGF in a variety of cell types. Because localized RA synthesis occurs within the periimplantation endometrium, we tested the possibility that RA regulates VEGF production in endometrial stromal cells. Using primary and telomerase-immortalized human endometrial stromal cells, we determined that RA alone did not alter constitutive levels of VEGF production, but markedly amplified secretion when the cells were cotreated with activators of VEGF gene transcription (12-O-tetradecanoyl phorbol-13-acetate, TPA; TGF-β; and IL-1β). Whereas TPA or TGF-β alone stimulated VEGF promoter activity and up-regulated mRNA levels, significant protein secretion was detected only after RA was added to the culture systems. Analysis of retinoids in secretory phase endometrial biopsies indicated that endogenous RA accumulated at concentrations sufficient to induce VEGF secretion. Polyribosome profile analysis showed that the addition of RA to transcriptional activators of VEGF shifted the translational suppressed VEGF mRNA transcripts into larger polyribosome complexes engaged in active translation. Although the precise mechanism(s) of the RA effect remains to be defined, it appears to be mediated by reactive oxygen species; the antioxidant N-acetylcysteine inhibited RA+TPA-stimulated secretion of VEGF by more than 80%. Together, our results demonstrate that in human endometrial stromal cells, RA can combine with transcriptional activators of VEGF to augment VEGF secretion through a translational mechanism of action mediated by reactive oxygen species. These findings suggest a link between the spatiotemporal changes of retinoid synthesis in the periimplantation stroma and the capacity to quickly up-regulate focal VEGF secretion needed to induce early angiogenic events of pregnancy.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility