Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Molecular and Cellular Biology
Year: 2008  |  Volume: 28  |  Issue: 10  |  Page No.: 3219 - 3235

Histone Deacetylase Inhibitor Depsipeptide Activates Silenced Genes through Decreasing both CpG and H3K9 Methylation on the Promoter

Li-Peng Wu, Xi Wang, Lian Li, Ying Zhao, Shaoli Lu, Yu Yu, Wen Zhou, Xiangyu Liu, Jing Yang, Zhixin Zheng, Hui Zhang, Jingnan Feng, Yang Yang, Haiying Wang and Wei-Guo Zhu    

Abstract: Histone deacetylase inhibitor (HDACi) has been shown to demethylate the mammalian genome, which further strengthens the concept that DNA methylation and histone modifications interact in regulation of gene expression. Here, we report that an HDAC inhibitor, depsipeptide, exhibited significant demethylating activity on the promoters of several genes, including p16, SALL3, and GATA4 in human lung cancer cell lines H719 and H23, colon cancer cell line HT-29, and pancreatic cancer cell line PANC1. Although expression of DNA methyltransferase 1 (DNMT1) was not affected by depsipeptide, a decrease in binding of DNMT1 to the promoter of these genes played a dominant role in depsipeptide-induced demethylation and reactivation. Depsipeptide also suppressed expression of histone methyltransferases G9A and SUV39H1, which in turn resulted in a decrease of di- and trimethylated H3K9 around these genes` promoter. Furthermore, both loading of heterochromatin-associated protein 1 (HP1α and HP1β) to methylated H3K9 and binding of DNMT1 to these genes` promoter were significantly reduced in depsipeptide-treated cells. Similar DNA demethylation was induced by another HDAC inhibitor, apicidin, but not by trichostatin A. Our data describe a novel mechanism of HDACi-mediated DNA demethylation via suppression of histone methyltransferases and reduced recruitment of HP1 and DNMT1 to the genes` promoter.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility