Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Materials & Design
Year: 2009  |  Volume: 30  |  Issue: 5  |  Page No.: 1533 - 1541

Development of novel multilayer materials for impact applications: A combined numerical and experimental approach

A. Tasdemirci and I.W. Hall    

Abstract: A well-verified and validated numerical model was used to investigate stress wave propagation in a multilayer material subjected to impact loading. The baseline material consisted of a ceramic faceplate and composite backing plate separated by a rubber or teflon foam interlayer: several variants were investigated in which the number, type, and total thicknesses of the interlayers were altered. Comparison of the variants showed that the use of multiple teflon foam interlayers could drastically reduce the average stress in the multilayer material. Based on the numerical results, further experimental work was undertaken upon one of the variants. Very large and unexpected tensile stress oscillations were observed in the ceramic layers, leading to a refinement of the numerical model which successfully reproduced the oscillations and also demonstrated that separation of the sample layers led to trapping of the stress wave within the layers. Use of the validated numerical model allowed detailed analysis of the processes of wave transmission and demonstrates the important synergy that can exist between experimental and modeling studies. The current study provides a valuable starting point for designing future multilayer materials with specific, controlled properties.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility