Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Journal of Plant Sciences
Year: 2016  |  Volume: 11  |  Issue: 1-3  |  Page No.: 38 - 44

Exploration on Soil Actinomycetes Against Phytophthora sp. Causing Root Rot of Cassava and Plant Growth Promoting Activities

K. Khucharoenphaisan, K. Rodbangpong, P. Saengpaen and K. Sinma    

Abstract: Actinomycetes have been promised as biocontrol and stimulating agents for use in agriculture without detrimental effects to the environmental due to their antifungal with secondary metabolites produced. The aim of this study was to screen soil actinomycetes according to its ability to produce various secondary metabolites against Phytophthora sp. that causing root rot disease of cassava and stimulating agent has also determined. Firstly, soil actinomycetes were isolated and tested for antagonistic activity toward the fungus by the dual culture technique. After that the selected isolate was determined on the stimulating agent as IAA production. Finally, extracellular anti-fungal metabolites produced by selected isolates were evaluated for anti-fungal potential toward the fungus with agar core technique. The result showed that 98 isolates from soil samples were screened on their anti-fungal activity. Among these, 38 isolates showed the inhibition activities against Phytophthora sp. in which was isolated from infected cassava. The culture supernatants without cell obtained from 16 isolates were affective against the fungus whereas 10 isolates produced affective thermostable compound. In total, the isolate LB35 was most promising on the basis of its interesting antimicrobial activity and could produce IAA with 50 μg mL–1. Based on its 16S rDNA sequence and phylogenetic tree analysis, isolate LB35 belong to the Streptomyces malaysiensis. The addition of isolate LB35 as fresh inoculums to the cassava field, the cassava showed more height comparing to control experiment. Moreover, S. malaysiensis has not to be phytopathogenic microorganism of cassava. This finding has been increased scope of agriculturally important actinomycetes applications.

Cited References   |    Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

 
 
 
 
 
 
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility