Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Journal of Engineering and Applied Sciences
Year: 2007  |  Volume: 2  |  Issue: 7  |  Page No.: 1206 - 1212

Fiber Cement Composition Simulator Using Artificial Neural Networks

A.C.S. Silva, E.M. Bezerra, E.J.X. Costa and H. Savastano    

Abstract: The backpropagation algorithm was utilized to implement a fiber cement composition simulator. Six predictors were used: Synthetic fiber supplier, content of synthetic fiber, supplier of the softwood cellulose pulp, refinement degree of softwood cellulose pulp, content of softwood cellulose pulp and refinement degree of hardwood cellulose pulp. The combination of the 6 predictors generated compositions that were used as the Artificial Neural Network (ANN) target in relation to the variables: modulus of rupture (y1), toughness (y2) and water absorption (y3) of the fiber cement composites at the total age of 28 days that were used as the neural network input. The ANN performance was 97.3 % of correct classification with kappa coefficients varying between 0.89 and 0.93. The results suggest that the ANN approach can be used to simulate the composite formulation based on mechanical and physical characteristics using historical data set from experimental results.

Fulltext    |   Related Articles   |   Back
  Related Articles

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility