Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Journal of Biological Sciences
Year: 2012  |  Volume: 12  |  Issue: 1  |  Page No.: 51 - 56

Inhibition Kinetic of Apium graveolens L. Ethanol Extract and its Fraction on the Activity of Xanthine Oxidase and its Active Compound

Dyah Iswantini, Nadinah, Latifah Kosim Darusman and Trivadila    

Abstract: Apium graveolens, one of the traditional medicinal plants, has a potential as anti-gout. We have reported that flavonoid of A. graveolens could inhibit activity of xanthine oxidase enzyme up to 85.44%. The aim of the research was to investigate the type of inhibition kinetic of A. graveolens ethanol crude extract and its fraction inhibition kinetic, also to determine the active compound. The result of the research showed that the yield of A. graveolens ethanol crude extract was 10.40 % (LC50 1968.19 mg L-1) with the inhibition activity was 6.04% until 74.01% (100-2000 mg L-1). Inhibition kinetic of 1500 mg L-1 crude extract caused increased KM (0.10 mM) and unchanged Vmax. Based on these data, the type of inhibition was competitive. Purification of crude extract resulted 7 fractions and the highest activity was achieved by fraction 6 (inhibition activity was 85.08%). The purification of crude extract caused the increasing of inhibition activity effect. Inhibition kinetic of fraction 6 (150 mg L-1) caused increase KM (0.30 mM) and unchanged of Vmax. Based on that, the type of inhibition was competitive. Purification of fraction 6 resulted 6 fraction and the highest activity was achieved by fraction 5 (inhibition activity was 88.41%). Based on analysis of LCMS and NMR, the active compound of A. graveolens extract (fraction 5) were potential to inhibit the activity of xanthine oxidase, the active compound was 5, 7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one and 2, 3-dihydro-6-hidroxy-5-benzofuran carboxylic acid.

Cited References   |    Fulltext    |   Related Articles   |   Back
  Related Articles

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility