Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Journal of Biological Sciences
Year: 2004  |  Volume: 4  |  Issue: 2  |  Page No.: 103 - 110

Effect of Potassium on Salinity Tolerance of Mungbean (Vigana radiata L. Wilczek)

M.E. Kabir, M.A. Karim and M.A.K. Azad    

Abstract: It is established that salinity disturbs mungbean plant growth by creating nutrient imbalance and disturbance in plant water relations. This study was undertaken to observe whether external application of K mitigates the harmful effect of salinity. Mungbean plant (var. BARI mung 3) was grown in pot at three levels of K viz. 14, 40 and 60 kg ha ha-1 under 0 and 75 mM NaCl saline conditions. Salinity decreased seriously relative water content and water retention capacity, while increased water saturation deficit and water uptake capacity. Salinity also decreased xylem exudation rate and leaf water potential. Application of higher amount of K improved the plant water relationship in mungbean plant. Salinity disturbed dry matter distribution in different plant parts as well decreased total dry matter. Similarly yield and yield contributing characters were also seriously affected by salinity, except number of seeds per pod. Application of different levels of potassium did not influence on dry matter production. However, yield and yield contributing characters were improved to some extent with the increasing levels of K. Salinity decreased significantly the uptake of N, P, K and Ca, while increased Na uptake several fold. Mg accumulation was unchanged due to salinity. K doses had no significant influence on nutrient uptake by mungbean plant, though the uptake of most of the nutrients showed an increasing tendency with the increased levels of K application. It was concluded that application of higher levels of K improves water relations as well as growth and yield of mungbean under mild level of saline conditions.

Cited References   |    Fulltext    |   Related Articles   |   Back
 
 
   
 
 
 
  Related Articles

 
 
 
 
 
 
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility