Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
The Journal of Biological Chemistry
Year: 2008  |  Volume: 283  |  Issue: 7  |  Page No.: 4004 - 4013

Serine 88 Phosphorylation of the 8-kDa Dynein Light Chain 1 Is a Molecular Switch for Its Dimerization Status and Functions

Chunying Song, Wenyu Wen, Suresh K. Rayala, Mingzhi Chen, Jianpeng Ma, Mingjie Zhang and Rakesh Kumar    

Abstract: Dynein light chain 1 (DLC1, also known as DYNLL1, LC8, and PIN), a ubiquitously expressed and highly conserved protein, participates in a variety of essential intracellular events. Transition of DLC1 between dimer and monomer forms might play a crucial role in its function. However, the molecular mechanism(s) that control the transition remain unknown. DLC1 phosphorylation on Ser88 by p21-activated kinase 1 (Pak1), a signaling nodule, promotes mammalian cell survival by regulating its interaction with Bim and the stability of Bim. Here we discovered that phosphorylation of Ser88, which juxtapose each other at the interface of the DLC dimer, disrupts DLC1 dimer formation and consequently impairs its interaction with Bim. Overexpression of a Ser88 phosphorylation-inactive DLC1 mutant in mammary epithelium cells and in a transgenic animal model caused apoptosis and accelerated mammary gland involution, respectively, with increased Bim levels. Structural and biophysical studies suggested that phosphorylation-mimicking mutation leads to dissociation of the DLC1 dimer to a pure folded monomer. The phosphorylation-induced DLC1 monomer is incapable of binding to its substrate Bim. These findings reveal a previously unrecognized regulatory mechanism of DLC1 in which the Ser88 phosphorylation acts as a molecular switch for the transition of DLC1 from dimer to monomer, thereby modulating its interaction with substrates and consequently regulating the functions of DLC1.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility