Search. Read. Cite.

Easy to search. Easy to read. Easy to cite with credible sources.

The Journal of Biological Chemistry

Year: 2008  |  Volume: 283  |  Issue: 52  |  Page No.: 36504 - 36512

Molecular Basis of the Interaction of Saccharomyces cerevisiae Eaf3 Chromo Domain with Methylated H3K36

Bingfa Sun, Jing Hong, Peng Zhang, Xianchi Dong, Xu Shen, Donghai Lin and Jianping Ding


Eaf3 is a component of both NuA4 histone acetyltransferase and Rpd3S histone deacetylase complexes in Saccharomyces cerevisiae. It is involved in the regulation of the global pattern of histone acetylation that distinguishes promoters from coding regions. Eaf3 contains a chromo domain at the N terminus that can bind to methylated Lys-36 of histone H3 (H3K36). We report here the crystal structures of the Eaf3 chromo domain in two truncation forms. Unlike the typical HP1 and Polycomb chromo domains, which contain a large groove to bind the modified histone tail, the Eaf3 chromo domain assumes an autoinhibited chromo barrel domain similar to the human MRG15 chromo domain. Compared with other chromo domains, the Eaf3 chromo domain contains a unique 38-residue insertion that folds into two short β-strands and a long flexible loop to flank the β-barrel core. Both isothermal titration calorimetry and surface plasmon resonance studies indicate that the interaction between the Eaf3 chromo domain and the trimethylated H3K36 peptide is relatively weak, with a KD of ~10-4 M. NMR titration studies demonstrate that the methylated H3K36 peptide is bound to the cleft formed by the C-terminal α-helix and the β-barrel core. Site-directed mutagenesis study and in vitro binding assay results show that the conserved aromatic residues Tyr-23, Tyr-81, Trp-84, and Trp-88, which form a hydrophobic pocket at one end of the β-barrel, are essential for the binding of the methylated H3K36. These results reveal the molecular mechanism of the recognition and binding of the methylated H3K36 by Eaf3 and provide new insights into the functional roles of the Eaf3 chromo domain.

View Fulltext