Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
The Journal of Biological Chemistry
Year: 2008  |  Volume: 283  |  Issue: 28  |  Page No.: 19351 - 19358

A 52-kDa Leucyl Aminopeptidase from Treponema denticola Is a Cysteinylglycinase That Mediates the Second Step of Glutathione Metabolism

Lianrui Chu, Yanlai Lai, Xiaoping Xu, Scott Eddy, Shuang Yang, Li Song and David Kolodrubetz    

Abstract: The metabolism of glutathione by the periodontal pathogen Treponema denticola produces hydrogen sulfide, which may play a role in the host tissue destruction seen in periodontitis. H2S production in this organism has been proposed to occur via a three enzyme pathway, γ-glutamyltransferase, cysteinylglycinase (CGase), and cystalysin. In this study, we describe the purification and characterization of T. denticola CGase. Standard approaches were used to purify a 52-kDa CGase activity from T. denticola, and high pressure liquid chromatography electrospray ionization tandem mass spectrometry analysis of this molecule showed that it matches the amino acid sequence of a predicted 52-kDa protein in the T. denticola genome data base. A recombinant version of this protein was overexpressed in and purified from Escherichia coli and shown to catalyze the hydrolysis of cysteinylglycine (Cys-Gly) with the same kinetics as the native protein. Surprisingly, because sequence homology indicates that this protein is a member of a family of metalloproteases called M17 leucine aminopeptidases, the preferred substrate for the T. denticola protein is Cys-Gly (kcat/Km of 8.2 µM–1 min–1) not L-Leu-p-NA (kcat/Km of 1.1 µM–1 min–1). The activity of CGase for Cys-Gly is optimum at pH 7.3 and is enhanced by Mn2+, Co2+, or Mg2+ but not by Zn2+ or Ca2+. Importantly, in combination with the two other previously purified T. denticola enzymes, γ-glutamyltransferase and cystalysin, CGase mediates the in vitro degradation of glutathione into the expected end products, including H2S. These results prove that T. denticola contains the entire three-step pathway to produce H2S from glutathione, which may be important for pathogenesis.

View Fulltext    |   Related Articles   |   Back
 
 
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility