Search. Read. Cite.

Easy to search. Easy to read. Easy to cite with credible sources.

The Journal of Biochemistry

Year: 2010  |  Volume: 147  |  Issue: 5  |  Page No.: 651 - 659

Regulation of alternative splicing of the receptor for advanced glycation endproducts (RAGE) through G-rich cis-elements and heterogenous nuclear ribonucleoprotein H

K Ohe, T Watanabe, S. i Harada, S Munesue, Y Yamamoto, H Yonekura and H. Yamamoto

Abstract

Receptor for advanced glycation endproducts (RAGE) is a cell-surface receptor. The binding of ligands to membrane-bound RAGE (mRAGE) evokes cellular responses involved in various pathological processes. Previously, we identified a novel soluble form, endogenous secretory RAGE (esRAGE) generated by alternative 5' splice site selection in intron 9 that leads to extension of exon 9 (exon 9B). Because esRAGE works as an antagonistic decoy receptor, the elucidation of regulatory mechanism of the alternative splicing is important to understand RAGE-related pathological processes. Here, we identified G-rich cis-elements within exon 9B for regulation of the alternative splicing using a RAGE minigene. Mutagenesis of the G-rich cis-elements caused a drastic increase in the esRAGE/mRAGE ratio in the minigene-transfected cells and in loss of binding of the RNA motif to heterogenous nuclear ribonucleoprotein (hnRNP) H. On the other hand, the artificial introduction of a G-stretch in exon 9B caused a drastic decrease in the esRAGE/mRAGE ratio accompanied by the binding of hnRNP H to the RNA motif. Thus, the G-stretches within exon 9B regulate RAGE alternative splicing via interaction with hnRNP H. The findings should provide a molecular basis for the development of medicines for RAGE-related disorders that could modulate esRAGE/mRAGE ratio.

View Fulltext