Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
The Journal of Biochemistry
Year: 2010  |  Volume: 148  |  Issue: 6  |  Page No.: 631 - 638

Professor Tatsuo Miyazawa: from molecular structure to biological function

G Kawai and S. Yokoyama    

Abstract:

The late Prof. Tatsuo Miyazawa was an outstanding physical chemist, who established a number of spectroscopic methods to analyse the structures of proteins, peptides and nucleotides, and used them to understand molecular functions. He developed an infrared spectroscopic method to quantitatively analyse the secondary structures, -helices and β-strands, of proteins. He successfully utilized nuclear magnetic resonance (NMR) methods to determine the conformations of peptides and proteins, particularly with respect to the interactions with their target molecules, which served as a solid basis for the wide range of applications of NMR spectroscopy to life science research. For example, he found that physiologically active peptides are randomly flexible in solution, but assume a particular effective conformation upon binding to their functional environments, such as membranes. He also used NMR spectroscopy to quantitatively analyse the conformer equilibrium of nucleotides, and related the dynamic properties of the modified nucleosides naturally-occurring in transfer ribonucleic acids (tRNAs) to their roles in correct codon recognition in protein synthesis. Furthermore, he studied the mechanisms of protein biosynthesis systems, including tRNA and aminoacyl-tRNA synthetases. Inspired by the structural mechanism of amino acid recognition by aminoacyl-tRNA synthetases, as revealed by NMR spectroscopy, he initiated a new research area in which non-natural amino acids are site-specifically incorporated into proteins to achieve novel protein functions (alloprotein technology).

View Fulltext    |   Related Articles   |   Back
 
 
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility