Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
The Journal of Biochemistry
Year: 2009  |  Volume: 146  |  Issue: 5  |  Page No.: 659 - 665

Mycolyltransferase from Mycobacterium leprae Excludes Mycolate-containing Glycolipid Substrates

H Nakao, I Matsunaga, D Morita, T Aboshi, T Harada, Y Nakagawa, N Mori and M. Sugita    

Abstract:

Trehalose dimycolate (TDM) is a major surface-exposed mycolyl glycolipid that contributes to the hydrophobic cell wall architecture of mycobacteria. Nevertheless, because of its potent adjuvant functions, pathogenic mycobacteria appear to have evolved an evasive maneuver to down-regulate TDM expression within the host. We have shown previously that Mycobacterium tuberculosis (M.tb) and Mycobacterium avium (M.av), replace TDM with glucose monomycolate (GMM) by borrowing host-derived glucose as an alternative substrate for the FbpA mycolyltransferase. Mycobacterium leprae (M.le), the causative microorganism of human leprosy, is also known to down-regulate TDM expression in infected tissues, but the function of its mycolyltransferases has been poorly analysed. We found that, unlike M.tb and M.av FbpA enzymes, M.av FbpA was unexpectedly inefficient in transferring -branched mycolates, resulting in impaired production of both TDM and GMM. Molecular modelling and mutational analysis indicated that a bulky side chain of leucine at position 130 of M.le FbpA obstructed the intramolecular tunnel that was proposed to accommodate the -branch portion of the substrates. Notably, even after a highly reductive evolution, M.le FbpA remained functional in terms of transferring unbranched acyl chains, suggesting a role that is distinct from that as a mycolyltransferase.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility