Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Journal of Animal and Veterinary Advances
Year: 2011  |  Volume: 10  |  Issue: 12  |  Page No.: 1504 - 1511

Predicting Fresh Beef Color Grade Using Machine Vision Imaging and Support Vector Machine (SVM) Analysis

X. Sun, K. Chen, E.P. Berg and J.D. Magolski    

Abstract: This study investigates the usefulness of electronically derived and analyzed fresh beef lean color image features for predicting official Chinese beef color scores. About 160 beef longissimus thoracis (ribeye) cross-section images were collected. The twelve features of beef muscle color were extracted and one feature was calculated using stepwise multiple regression analysis. Multiple linear regression and SVM model with inputs of color features and outputs of 4-7 color scores, respectively were designed to automatically estimate the grade of beef muscle color. Multiple linear regression analysis of the coefficient of determination (R2 = 0.89) and the model accuracy which determine the beef color muscle scores is 86.8%. SVM classifier achieved the best performance percentage of 94.7% showing that the machine vision combined with SVM discrimination method can provide an effective tool for predicting color scores of beef muscle.

Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

 
 
 
 
 
 
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility