Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Journal of Applied Sciences
Year: 2014  |  Volume: 14  |  Issue: 12  |  Page No.: 1294 - 1298

Removal of Heavy Metals from Simulated Wastewater Using Physically and Chemically Modified Palm Shell Activated Carbon

Nur Azreen Fuadi, Ahmmed Saadi Ibrahem and Kamariah Noor Ismail    

Abstract: The purpose of the present study is to investigate the adsorption efficiency of Activated Carbons (AC) derived from oil palm shell in an adsorption column for removal of beryllium, calcium, cadmium, cobalt, chromium, copper, iron, lithium, magnesium, manganese, molybdenum, nickel, lead, antimony, strontium, titanium, vanadium and zinc ions from aqueous solution. Three types of adsorbent were used for the metal removal, which undergoes physical and/or chemical treatment. In physical treatment, raw palm shell was burned at 600°C for 5 h. All the adsorbents undergo physical treatment, with only the first adsorbent unblended, while the second adsorbent was blended. The third adsorbent underwent physical and chemical treatments where the physically treated AC was mixed with solvents for 24 h, then washed and dried. The solvent used for the third adsorbent were acetone and benzene. The results indicated that removal of metal ions by adsorption spawned different activities for different adsorbents. It is indicated that for overall adsorption efficiency, AC derived by combining physical and chemical treatment showed a maximum adsorption capacity with the least area under graph; 1371, calculated using trapezoidal equation. The physical treatment produced high carbon content by carbonization and high surface area by size reduction, while the chemical treatment enhanced the development of carbon surface by generating more pores, thus increasing the number of adsorption sites.

Cited References   |    Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

 
 
 
 
 
 
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility