Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Journal of Applied Sciences
Year: 2011  |  Volume: 11  |  Issue: 16  |  Page No.: 3044 - 3048

Thermal Analysis of D-mannitol for Use as Phase Change Material for Latent Heat Storage

G. Kumaresan, R. Velraj and S. Iniyan    

Abstract: The aim of this study was to investigate the thermal properties of D-Mannitol as a Phase Change Material (PCM) for latent heat storage system. Heat absorbed by D-Mannitol causes it to undergo a change from the solid to the liquid phase and this heat is stored as the latent heat of fusion. The stored energy can then be retrieved at a later time for various applications. The melting point and enthalpy of the fusion of D-Mannitol are important properties and these were determined by Differential Scanning Calorimetry (DSC) measurements. Melting was found to begin at 162.15°C and attained a peak at 167.8°C while the enthalpy of fusion was found to be 326.8 J g-1 for 10°C min-1. Furthermore the change in melting temperature and enthalpy of fusion for different heating rates were studied experimentally by DSC. D-Mannitol’s thermal stability was studied using the TG-DTG (thermogravimetry-derivative thermogravimetry) and TG-DTA (thermogravimetry-differential thermal analysis) curves. The TG-DTG curves revealed that thermal decomposition began at 300.15°C. The DTA curve had a sharp endothermic peak at 169.2°C followed by a broad exothermic one at 297°C. The curves showed that D-Mannitol decomposes in one prominent mass loss stage. The measurement of latent heat (enthalpy of fusion), melting point and decomposition point showed that D-Mannitol with a latent heat 326.8 kJ kg-1 and melting temperature 167.8°C is the most suitable PCM candidate for medium temperature applications because of a large temperature difference of 132°C between its melting point and decomposition temperature.

Cited References   |    Fulltext    |   Related Articles   |   Back
 
 
   
 
 
 
  Related Articles

 
 
 
 
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility