Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Journal of Applied Sciences
Year: 2011  |  Volume: 11  |  Issue: 15  |  Page No.: 2855 - 2860

Explaining Results of Artificial Neural Networks

D. Yedjour, H. Yedjour and A. Benyettou    

Abstract: Neural networks are very efficient in solving various problems but they have no ability of explaining their answers and presenting gathered knowledge in a comprehensible way. Two main approaches are used, namely the pedagogical one that treats a network as a black box and the local one that examines its structure. Because searching rules is similar to NP-hard problem it justifies an application of evolutionary algorithm to the rule extraction. Pedagogical approaches such as GA are insensitive to the number of units of neural networks as they see them as "black boxes" interested only their inputs and their outputs. In the study we describe new rule extraction method based on evolutionary algorithm called GenRGA. It uses logical rules and is composed of three (03) main parts: genetic module, neural networks module and rules simplification module. GenRGA is tested in experimental studies using different benchmark data sets from UCI repository. Comparisons with other methods show that the extracted rules are accurate and highly comprehensible.

Cited References   |    Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

 
 
 
 
 
 
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility