Search. Read. Cite.

Easy to search. Easy to read. Easy to cite with credible sources.

Journal of Applied Sciences

Year: 2009  |  Volume: 9  |  Issue: 6  |  Page No.: 1128 - 1134

Effects of Air-Fuel Ratio and Engine Speed on Performance of Hydrogen Fueled Port Injection Engine

M.M. Rahman, Mohammed K. Mohammed and Rosli A. Bakar


This study was investigated the effect of air-fuel ratio (AFR) and engine speed on performance of the single cylinder hydrogen fueled port injection engine. GT-Power was utilized to develop the computational model for port injection engine. One dimensional gas dynamics model was represented the flow and heat transfer in the components of the engine. Throughout the study, air-fuel ratio was varied from stoichiometric mixture to lean. The engine speeds were varied from 2500 to 4500 rpm. The results show that the air-fuel ratio and engine speed were greatly influence on the performance of hydrogen fueled engine especially Brake Mean Effective Pressure (BMEP), thermal efficiency and brake specific fuel consumption (BSFC). It was shown that decreases of the BMEP and brake thermal efficiency with increases of the engine speed and air-fuel ratio while the increases of the BSFC with increases of the speed and air-fuel ratio. The cylinder temperature increases with increases of engine speed however temperature decreases with increases of air-fuel ratio. The volumetric efficiency increases with increases of engine speed and equivalent ratio. The volumetric efficiency of the hydrogen engines with port injection is serious problem and reduces the overall performance of the engine. This emphasized the ability of retrofitting the traditional engines with hydrogen fuel with minor modifications.

Cited References Fulltext