Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
International Immunology
Year: 2009  |  Volume: 21  |  Issue: 10  |  Page No.: 1125 - 1134

Protective role of mouse MBL-C on intestinal mucosa during Shigella flexneri invasion

D. M Zuo, L. Y Zhang, X Lu, Y Liu and Z. L. Chen    

Abstract:

Mannan-binding lectin (MBL) is a C-type serum lectin, which is believed to play an important role in the innate immunity against a variety of pathogens. MBL can bind to sugar determinants of a wide variety of microorganisms, neutralize them and inhibit infection by complement activation through the lectin pathway and opsonization by collectin receptors. Given that small intestine is a predominant site of extrahepatic expression of MBL, here we addressed the question whether MBL is involved in mucosal innate immunity. The carbohydrate recognition domain (CRD) genes of mouse MBL-C (mMBL-C) were cloned and expressed in Escherichia coli. Recombinant mMBL-C-CRD binds to Shigella flexneri 2a in a calcium-dependent manner and that interaction could be blocked by the anti-mMBL-C-CRD antibody. mMBL-C-CRD protein could inhibit the adhesion of S. flexneri 2a to intestinal mucosa, while administration of anti-mMBL-C-CRD antibody caused an increased level of bacteria adhesion in vitro. Administration of recombinant mMBL-C-CRD protein reduced the secretion of IL-6 and monocyte chemoattractant protein 1 from primary intestinal epithelial cells stimulated with S. flexneri 2a. Furthermore, neutralization of MBL activity by anti-MBL-C-CRD resulted in a significant increase in the number of S. flexneri 2a that colonized the intestines of BALB/c mice and attenuated the severity of inflammation seen in the areas of bacterial invasion. These findings suggest that mMBL-C may protect host intestinal mucosa by directly binding to the bacteria.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility