Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Expert Systems with Applications
Year: 2009  |  Volume: 36  |  Issue: 9  |  Page No.: 11844 - 11852

An ACS-based framework for fuzzy data mining

Tzung-Pei Hong, Ya-Fang Tung, Shyue-Liang Wang, Min-Thai Wu and Yu-Lung Wu    


Data mining is often used to find out interesting and meaningful patterns from huge databases. It may generate different kinds of knowledge such as classification rules, clusters, association rules, and among others. A lot of researches have been proposed about data mining and most of them focused on mining from binary-valued data. Fuzzy data mining was thus proposed to discover fuzzy knowledge from linguistic or quantitative data. Recently, ant colony systems (ACS) have been successfully applied to optimization problems. However, few works have been done on applying ACS to fuzzy data mining. This thesis thus attempts to propose an ACS-based framework for fuzzy data mining. In the framework, the membership functions are first encoded into binary-bits and then fed into the ACS to search for the optimal set of membership functions. The problem is then transformed into a multi-stage graph, with each route representing a possible set of membership functions. When the termination condition is reached, the best membership function set (with the highest fitness value) can then be used to mine fuzzy association rules from a database. At last, experiments are made to make a comparison with other approaches and show the performance of the proposed framework.

View Fulltext    |   Related Articles   |   Back
  Related Articles

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility