Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Clinical Chemistry
Year: 2009  |  Volume: 55  |  Issue: 7  |  Page No.: 1395 - 1405

Molecular Species of the Alcohol Biomarker Phosphatidylethanol in Human Blood Measured by LC-MS

A Helander and Y. Zheng    

Abstract:

Background: The alcohol biomarker phosphatidylethanol (PEth) comprises a group of ethanol-derived phospholipids formed from phosphatidylcholine by phospholipase D. The PEth molecular species have a common phosphoethanol head group onto which 2 fatty acid moieties are attached. We developed an electrospray ionization (ESI) LC-MS method for qualitative and quantitative measurement of different PEth species in human blood.

Methods: We subjected a total lipid extract of whole blood to HPLC gradient separation on a C4 column and performed LC-ESI-MS analysis using selected ion monitoring of deprotonated molecules for the PEth species and phosphatidylpropanol (internal standard). Identification of individual PEth species was based on ESI–tandem mass spectrometry (MS/MS) analysis of product ions.

Results: The fatty acid moieties were the major product ions of PEth, based on comparison with PEth-16:0/16:0, 18:1/18:1, and 16:0/18:1 reference material. For LC-MS analysis of different PEth species in blood, we used a calibration curve covering 0.2–7.0 µmol/L PEth-16:0/18:1. The lower limit of quantitation of the method was <0.1 µmol/L, and intra- and interassay CVs were <9% and <11%. In blood samples collected from 38 alcohol patients, the total PEth concentration ranged between 0.1 and 21.7 µmol/L (mean 8.9). PEth-16:0/18:1 and 16:0/18:2 were the predominant molecular species, accounting for approximately 37% and 25%, respectively, of total PEth. PEth-16:0/20:4 and mixtures of 18:1/18:1 plus 18:0/18:2 (not separated using selected ion monitoring because of identical molecular masses) and 16:0/20:3 plus 18:1/18.2 made up approximately 13%, 12%, and 8%.

Conclusions: This LC-MS method allows simultaneous qualitative and quantitative measurement of several PEth molecular species in whole blood samples.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility