Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Circulation Research
Year: 2009  |  Volume: 104  |  Issue: 11  |  Page No.: 1318 - 1325

The Recovery Time Course of the Endothelial Cell Glycocalyx In Vivo and Its Implications In Vitro

D. R Potter, J Jiang and E. R. Damiano    

Abstract:

Compelling evidence continues to emerge suggesting that the glycocalyx surface layer on vascular endothelial cells plays a determining role in numerous physiological processes including inflammation, microvascular permeability, and endothelial mechanotransduction. Previous research has shown that enzymes degrade the glycocalyx, whereas inflammation causes shedding of the layer. To track the endogenous recovery of the glycocalyx in vivo, we used fluorescent microparticle image velocimetry (µ-PIV) in mouse cremaster muscle venules to estimate the hydrodynamically relevant glycocalyx thickness 1, 3, 5, and 7 days after enzymatic or cytokine-mediated degradation of the layer. Results indicate that after acute degradation of the glycocalyx, 5 to 7 days are required for the layer to endogenously restore itself to its native hydrodynamically relevant thickness in vivo. In light of these findings, and because demonstrable evidence has emerged that standard cell culture conditions are not conducive to providing the environment and/or cellular conditions necessary to produce and maintain a physiologically relevant cell surface glycocalyx in vitro, we sought to determine whether merely the passage of time would be sufficient to promote the production of a hydrodynamically relevant glycocalyx on a confluent monolayer of human umbilical vein endothelial cells (HUVECs). Using µ-PIV, we found that the hydrodynamically relevant glycocalyx was substantially absent 7 days postconfluence on HUVEC-lined cylindrical collagen microchannels maintained under standard culture conditions. Thus, it remains to be determined how a hydrodynamically relevant glycocalyx surface layer can be synthesized and maintained in culture before the endothelial cell culture model can be used to elucidate glycocalyx-mediated mechanisms of endothelial cell function.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility