Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Carcinogenesis
Year: 2010  |  Volume: 31  |  Issue: 2  |  Page No.: 281 - 286

Inhibition of bladder cancer development by allyl isothiocyanate

A Bhattacharya, L Tang, Y Li, F Geng, J. D Paonessa, S. C Chen, M. K.K Wong and Y. Zhang    

Abstract:

Bladder cancer is one of the common human cancers and also has a very high recurrence rate. There is a great need for agents capable of inhibiting bladder cancer development and recurrence. Here, we report that allyl isothiocyanate (AITC), an ingredient of many common cruciferous vegetables, potently inhibited the proliferation of bladder carcinoma cell lines in vitro [half maximal inhibitory concentration (IC50) of 2.7–3.3 µM], which was associated with profound G2/M arrest and apoptosis. In contrast, AITC was markedly less toxic to normal human bladder epithelial cells (IC50 of 69.4 µM). AITC was then evaluated in two rat bladder cancer models in vivo (an orthotopic model and a subcutaneous model). The orthotopic model closely mimics human bladder cancer development and recurrence. We show that a low oral dose of AITC (1 mg/kg) significantly inhibited the development and muscle invasion of the orthotopic bladder cancers but was ineffective against the subcutaneous xenografts of the same cancer cells in the same animals. This differential effect was explained by our finding that urinary levels of AITC equivalent were two to three orders of magnitude higher than that in the plasma and that its levels in the orthotopic cancer tissues were also three orders of magnitude higher than that in the subcutaneous cancer tissues. Moreover, we show that AITC is a multi-targeted agent against bladder cancer. In conclusion, AITC is selectively delivered to bladder cancer tissue through urinary excretion and potently inhibits bladder cancer development and invasion.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

No Article Found
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility