Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Applied Energy
Year: 2010  |  Volume: 87  |  Issue: 7  |  Page No.: 2313 - 2320

On comparing three artificial neural networks for wind speed forecasting

Gong Li and Jing Shi    

Abstract: Wind speed forecasting is critical for wind energy conversion systems since it greatly influences the issues such as the scheduling of a power system, and the dynamic control of the wind turbine. In this paper, we present a comprehensive comparison study on the application of different artificial neural networks in 1-h-ahead wind speed forecasting. Three types of typical neural networks, namely, adaptive linear element, back propagation, and radial basis function, are investigated. The wind data used are the hourly mean wind speed collected at two observation sites in North Dakota. The performance is evaluated based on three metrics, namely, mean absolute error, root mean square error, and mean absolute percentage error. The results show that even for the same wind dataset, no single neural network model outperforms others universally in terms of all evaluation metrics. Moreover, the selection of the type of neural networks for best performance is also dependent upon the data sources. Among the optimal models obtained, the relative difference in terms of one particular evaluation metric can be as much as 20%. This indicates the need of generating a single robust and reliable forecast by applying a post-processing method.

View Fulltext    |   Related Articles   |   Back
   
 
 
 
  Related Articles

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility