Search. Read. Cite.

Easy to search. Easy to read. Easy to cite with credible sources.

The Annals of Occupational Hygiene

Year: 2012  |  Volume: 56  |  Issue: 4  |  Page No.: 401 - 412

A Comparative Field Study on Dust Measurements by Different Sampling Methods with Emphasis on Estimating Factors for Recalculation from Chinese ‘Total Dust’ Measurements to Respirable Dust Concentrations

Lei Yang, Weihong Chen, Zhenglun Wang, Jingzhi Sun, Limin Wang, Guilin Yi, Jinbo Yang, Jichao Li, Geshi Mao, Markus Mattenklott, Michael Koob, Yi Sun, Frank Bochmann and Dirk Dahmann

Abstract

In China, dust samplers were originally designed to collect ‘total dust’ for a short term during production, which is different from the widely adopted sampling strategy for dust. With the aim to provide the conversion factor from Chinese total dust to US and German respirable dust and to look at the influences on conversion factors from environment, production, and instruments, a comparative field study on the dust concentration measurements by different sampling methods was carried out in the same Chinese industries as in the 1989-1990 study and in some other factories. A supplemental experiment was also conducted in a wind tunnel. Dust concentration was measured with a parallel sampling strategy by using the following samplers: 10-mm nylon cyclone for US respirable dust (AR), FSP-Berufsgenossenschaftliches Institut fur Arbeitssicherheit (BIA) cyclone for German respirable dust (GR), and samplers for Chinese total dust (CT). Totally, 1434 samples were collected (269 AR, 198 GR, and 967 CT), from which 429 matched sample pairs (249 pairs of AR/CT, 180 GR/CT) were available to calculate conversion ratios. Industry- and job-based conversion factors are presented in this study. The conversion factor of AR/CT was 0.38 for tungsten mines, 0.19 for copper/iron mines, 0.65 for tin mines, and 0.20 for pottery industry, while the factor of GR/CT was 0.69 for tungsten, 0.37 for copper/iron, and 0.52 for pottery. In the job category, AR/CT factors varied from 0.16 to 0.96 and GR/CT from 0.12 to 0.72. For the industries studied in 1988-1989, the AR/CT and GR/CT factors were 0.29 and 0.45, respectively. Both factors were definitely influenced by production, CT dust concentration, sample gain, and variation of dust concentration. Moreover, the respirable dust concentration by FSP-BIA was significantly higher than that by 10-mm cyclones, 63.27-73.10% more as showed also by the wind tunnel experiment. Meanwhile, the GR/CT ratio was significantly larger than the AR/CT in every industry or job with only few exceptions. The GR/CT estimates should be considered as independent ones. Following these results, there is a need to use ‘ideal samplers’ (consistent with the internationally accepted respirable fraction) in practice and to assess the existent samplers in order to homogenize the exposure data situation.

View Fulltext