Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Asian Journal of Plant Sciences
Year: 2017  |  Volume: 16  |  Issue: 2  |  Page No.: 65 - 77

Oxidative Stress and Photosynthesis Reduction of Cultivated (Glycine max L.) and Wild Soybean (G. tomentella L.) Exposed to Drought and Paraquat

Hamim Hamim, Violita Violita, Triadiati Triadiati and Miftahudin Miftahudin    

Abstract: Background and Objective: Drought is an abiotic factor that significantly reduces agriculture production almost every year. Drought stress especially during excessive light results in enhancement of Reactive Oxygen Species (ROS) leading to an occurring oxidative stress. The increase of ROS also occurs in plants applied by herbicide. In this study, oxidative stress of three soybean (Glycine max L.) Merr) cultivars and a wild line soybean (G. tomentella ) were analyzed in response to drought and paraquat treatments. Methodology: Drought treatment was performed by withholding water for 12 days (for cultivars) and 22 days (for wild line soybean) in greenhouse experiment during flower initiation. Paraquat treatment was applied using manual sprayer at the same time of drought treatment application. Plant water status and photosynthetic rate were measured during the drought treatment and after rewatering and after paraquat application. During the treatment, malondialdehyde (MDA) and the activity of Glutathione Reductase (GR) and superoxide dismutase (SOD) enzymes were measured. Results: Drought treatment decreased plant relative water content up to 33 and 42% in sensitive and tolerant variety respectively. Transpiration and photosynthetic rate decreased almost to zero at the end of drought period, while those of control plant were 4.7 and 12.58 μmol m–2 sec–1, respectively. Malondialdehyde content and antioxidative enzymes GR and SOD increased substantially during the drought and paraquat application in all cultivated varieties as well as wild soybean. Conclusion: Drought and paraquat application induced oxidative stress in soybean cultivars as well as in wild soybean indicated by dramatic rising of ROS and the increase of malondialdehyde and antioxidative enzyme (GR and SOD) by approximately 2-3 folds but there was no clear pattern of enzyme activities between tolerant and sensitive varieties.

Cited References   |    Fulltext    |   Related Articles   |   Back
  Related Articles

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility