Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Asian Journal of Plant Sciences
Year: 2010  |  Volume: 9  |  Issue: 4  |  Page No.: 183 - 193

Morphological and Physiological Responses of Sorghum (Sorghum bicolor L. Moench) to Waterlogging

A. Promkhambut, A. Younger, A. Polthanee and C. Akkasaeng    

Abstract: The aim of this study was to investigate the effect of waterlogging on morphological and physiological traits of sorghum (Sorghum bicolor L. Moench) cultivars. Four sorghum cultivars, cv. Wray, Keller, Bailey (sweet cultivar) and cv. SP1 (forage cultivar) at five expanded leaf stage were subjected to 20 days of waterlogging and drained pots were kept as the control. Twenty days of waterlogging did not cause a significant difference in shoot and root biomass among cultivars. Flooding reduced leaf area (69%), plant height (30%) and youngest leaf expansion rate of all cultivars but severely reduced in SP1 (35-80%). Flooding promoted leaf senescence of all cultivars and biomass allocation to shoot (increase in shoot/root) in Wray, Keller and Bailey, but increased biomass partitioning to root in SP1. The initiation of new nodal root was noted in SP1, whereas the ability to maintain root surface area by increase in longest root length and nodal root development near soil surface was found in Wray. Photosynthetic rate, stomatal conductance and transpiration rate were severely reduced under waterlogging conditions of sweet cultivars (65-78%), but enhanced over the control in forage cultivar (56%). The ability to conserve root surface area, allocate more biomass to shoot during waterlogging and develop root near soil surface may support new growth in Wray, whereas the ability to maintain leaf gas exchange parameters in SP1 was due to the active nodal root growth. Nevertheless, there was no relationship between photosynthetic rate and shoot growth of sorghum under anaerobic conditions.

Cited References   |    Fulltext    |   Related Articles   |   Back
  Related Articles

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility